This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A240695 #28 Oct 01 2014 11:43:31 %S A240695 2,3,4,5,125,125,138,220,220,1766,5526,10351,12365,65653,65653,202738, %T A240695 490333,808762,1478432,1971352,1971352,1971352,14798206,14798206, %U A240695 14798206,14798206,161974053,547880880,1619543840,1619543840,1619543840,2103844465,6435961044 %N A240695 a(n) is the smallest k such that a unique product of distinct terms of A050376 which is equal to k! contains at least the first n terms of A050376. %C A240695 By the definition, the representation of a(n)! as a product of distinct terms of A050376 should contain the first n terms of A050376 and there is no restriction on the distribution of other factors of this product. %C A240695 a(38) > 2 * 10^11. - _Hiroaki Yamanouchi_, Oct 01 2014 %H A240695 Hiroaki Yamanouchi, <a href="/A240695/b240695.txt">Table of n, a(n) for n = 1..37</a> %e A240695 5! = 2*3*4*5. We have the first 4 terms of A050376, so a(4) = 5. %t A240695 bad[n_, pp_, mo_] := Catch[Do[If[ Mod[(n - Total@ IntegerDigits[n, pp[[i]]]) /(pp[[i]] - 1), mo[[i]] + 1] != mo[[i]], Throw@ True], {i, Length@ pp}]; False]; a[n_]:= Block[{fa, mo, pp, k},fa = FactorInteger[ Times @@ Select[Range[2, Prime[n]], (f = FactorInteger@# ; Length[f] == 1 && IntegerQ[Log[2, f[[1, 2]]]]) &, n]]; pp = First /@ fa; mo = Last /@ fa; k = fa[[-1, 1]]; While[ bad[k, pp, mo], k++]; k]; Array[a,15] (* _Giovanni Resta_, Apr 11 2014 *) %Y A240695 Cf. A240537, A240606, A240619, A240620, A240668, A240669, A240670, A240672. %K A240695 nonn %O A240695 1,1 %A A240695 _Vladimir Shevelev_, Apr 10 2014 %E A240695 a(5)-a(23) from _Giovanni Resta_, Apr 11 2014 %E A240695 a(24)-a(33) from _Hiroaki Yamanouchi_, Oct 01 2014