cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240711 Sum of the largest parts in the partitions of 4n into 4 parts with smallest part = 1.

This page as a plain text file.
%I A240711 #18 Jan 24 2018 03:10:31
%S A240711 1,15,62,163,333,596,973,1475,2130,2959,3969,5192,6649,8343,10310,
%T A240711 12571,15125,18012,21253,24843,28826,33223,38025,43280,49009,55199,
%U A240711 61902,69139,76893,85220,94141,103635,113762,124543,135953,148056,160873,174375,188630
%N A240711 Sum of the largest parts in the partitions of 4n into 4 parts with smallest part = 1.
%H A240711 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%H A240711 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,2,-4,2,-1,2,-1).
%F A240711 G.f.: x*(7*x^6+27*x^5+43*x^4+52*x^3+33*x^2+13*x+1) / ((x-1)^4*(x^2+x+1)^2). - _Colin Barker_, Apr 11 2014
%e A240711 For a(n) add the parts in the first columns.
%e A240711                                               13 + 1 + 1 + 1
%e A240711                                               12 + 2 + 1 + 1
%e A240711                                               11 + 3 + 1 + 1
%e A240711                                               10 + 4 + 1 + 1
%e A240711                                                9 + 5 + 1 + 1
%e A240711                                                8 + 6 + 1 + 1
%e A240711                                                7 + 7 + 1 + 1
%e A240711                                               11 + 2 + 2 + 1
%e A240711                                               10 + 3 + 2 + 1
%e A240711                               9 + 1 + 1 + 1    9 + 4 + 2 + 1
%e A240711                               8 + 2 + 1 + 1    8 + 5 + 2 + 1
%e A240711                               7 + 3 + 1 + 1    7 + 6 + 2 + 1
%e A240711                               6 + 4 + 1 + 1    9 + 3 + 3 + 1
%e A240711                               5 + 5 + 1 + 1    8 + 4 + 3 + 1
%e A240711                               7 + 2 + 2 + 1    7 + 5 + 3 + 1
%e A240711                5 + 1 + 1 + 1  6 + 3 + 2 + 1    6 + 6 + 3 + 1
%e A240711                4 + 2 + 1 + 1  5 + 4 + 2 + 1    7 + 4 + 4 + 1
%e A240711                3 + 3 + 1 + 1  5 + 3 + 3 + 1    6 + 5 + 4 + 1
%e A240711 1 + 1 + 1 + 1  3 + 2 + 2 + 1  4 + 4 + 3 + 1    5 + 5 + 5 + 1
%e A240711     4(1)            4(2)           4(3)            4(4)       ..   4n
%e A240711 ------------------------------------------------------------------------
%e A240711      1               15             62             163       ..   a(n)
%t A240711 b[n_] := Sum[((4 n - 2 - i)*Floor[(4 n - 2 - i)/2] - i (4 n - 2 - i)) (Floor[(Sign[(Floor[(4 n - 2 - i)/2] - i)] + 2)/2]), {i, 0, 2 n}]; c[1] = 1; c[n_] := Sum[Sum[i (Floor[(Sign[(Floor[(4 n - 2 - j)/2] - j)] + 2)/2]), {i, j + 1, Floor[(4 n - 2 - j)/2]}], {j, 0, 2 n}]; Table[b[n] - c[n], {n, 50}]
%o A240711 (PARI) Vec(x*(7*x^6+27*x^5+43*x^4+52*x^3+33*x^2+13*x+1)/((x-1)^4*(x^2+x+1)^2) + O(x^100)) \\ _Colin Barker_, Apr 11 2014
%Y A240711 Cf. A238328, A238340, A238702, A238705, A238706, A239056, A239057, A239059, A240707.
%K A240711 nonn,easy
%O A240711 1,2
%A A240711 _Wesley Ivan Hurt_, Apr 10 2014