This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A240711 #18 Jan 24 2018 03:10:31 %S A240711 1,15,62,163,333,596,973,1475,2130,2959,3969,5192,6649,8343,10310, %T A240711 12571,15125,18012,21253,24843,28826,33223,38025,43280,49009,55199, %U A240711 61902,69139,76893,85220,94141,103635,113762,124543,135953,148056,160873,174375,188630 %N A240711 Sum of the largest parts in the partitions of 4n into 4 parts with smallest part = 1. %H A240711 <a href="/index/Par#part">Index entries for sequences related to partitions</a> %H A240711 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,2,-4,2,-1,2,-1). %F A240711 G.f.: x*(7*x^6+27*x^5+43*x^4+52*x^3+33*x^2+13*x+1) / ((x-1)^4*(x^2+x+1)^2). - _Colin Barker_, Apr 11 2014 %e A240711 For a(n) add the parts in the first columns. %e A240711 13 + 1 + 1 + 1 %e A240711 12 + 2 + 1 + 1 %e A240711 11 + 3 + 1 + 1 %e A240711 10 + 4 + 1 + 1 %e A240711 9 + 5 + 1 + 1 %e A240711 8 + 6 + 1 + 1 %e A240711 7 + 7 + 1 + 1 %e A240711 11 + 2 + 2 + 1 %e A240711 10 + 3 + 2 + 1 %e A240711 9 + 1 + 1 + 1 9 + 4 + 2 + 1 %e A240711 8 + 2 + 1 + 1 8 + 5 + 2 + 1 %e A240711 7 + 3 + 1 + 1 7 + 6 + 2 + 1 %e A240711 6 + 4 + 1 + 1 9 + 3 + 3 + 1 %e A240711 5 + 5 + 1 + 1 8 + 4 + 3 + 1 %e A240711 7 + 2 + 2 + 1 7 + 5 + 3 + 1 %e A240711 5 + 1 + 1 + 1 6 + 3 + 2 + 1 6 + 6 + 3 + 1 %e A240711 4 + 2 + 1 + 1 5 + 4 + 2 + 1 7 + 4 + 4 + 1 %e A240711 3 + 3 + 1 + 1 5 + 3 + 3 + 1 6 + 5 + 4 + 1 %e A240711 1 + 1 + 1 + 1 3 + 2 + 2 + 1 4 + 4 + 3 + 1 5 + 5 + 5 + 1 %e A240711 4(1) 4(2) 4(3) 4(4) .. 4n %e A240711 ------------------------------------------------------------------------ %e A240711 1 15 62 163 .. a(n) %t A240711 b[n_] := Sum[((4 n - 2 - i)*Floor[(4 n - 2 - i)/2] - i (4 n - 2 - i)) (Floor[(Sign[(Floor[(4 n - 2 - i)/2] - i)] + 2)/2]), {i, 0, 2 n}]; c[1] = 1; c[n_] := Sum[Sum[i (Floor[(Sign[(Floor[(4 n - 2 - j)/2] - j)] + 2)/2]), {i, j + 1, Floor[(4 n - 2 - j)/2]}], {j, 0, 2 n}]; Table[b[n] - c[n], {n, 50}] %o A240711 (PARI) Vec(x*(7*x^6+27*x^5+43*x^4+52*x^3+33*x^2+13*x+1)/((x-1)^4*(x^2+x+1)^2) + O(x^100)) \\ _Colin Barker_, Apr 11 2014 %Y A240711 Cf. A238328, A238340, A238702, A238705, A238706, A239056, A239057, A239059, A240707. %K A240711 nonn,easy %O A240711 1,2 %A A240711 _Wesley Ivan Hurt_, Apr 10 2014