A240718 Number of decompositions of 2n into an unordered sum of two primes, one of the two primes less than sqrt(2n-2).
0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 0, 1, 0, 0, 1, 1, 2, 1, 2, 1, 3, 2, 1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 2, 2, 2, 1, 3, 3, 1, 1, 2, 2, 2, 2, 2
Offset: 1
Keywords
Examples
For n = 7, the a(7) = 1 solution is 2*7 = 3 + 11 = 7 + 7; one of these pairs, 3 + 11, contains a number less than sqrt(2*7 - 2).
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A002375.
Programs
-
Maple
P:= NULL: A[1]:= 0: nextp:= 2: for n from 2 to 100 do while nextp^2 < 2*n-2 do P:= P, nextp; nextp:= nextprime(nextp); od; A[n]:= numboccur(true, map(t -> isprime(2*n-t), [P])) od: seq(A[i],i=1..100); # Robert Israel, Apr 30 2019
-
PARI
a(n)=sum(i=2,primepi(floor(sqrt(2*n-2))),isprime(2*n-prime(i))) \\ Lear Young, Apr 11 2014