cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240718 Number of decompositions of 2n into an unordered sum of two primes, one of the two primes less than sqrt(2n-2).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 0, 1, 0, 0, 1, 1, 2, 1, 2, 1, 3, 2, 1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 2, 2, 2, 1, 3, 3, 1, 1, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Lear Young, Apr 11 2014

Keywords

Examples

			For n = 7, the a(7) = 1 solution is 2*7 = 3 + 11 = 7 + 7; one of these pairs, 3 + 11, contains a number less than sqrt(2*7 - 2).
		

Crossrefs

Cf. A002375.

Programs

  • Maple
    P:= NULL: A[1]:= 0: nextp:= 2:
    for n from 2 to 100 do
     while nextp^2 < 2*n-2 do
       P:= P, nextp;
       nextp:= nextprime(nextp);
     od;
     A[n]:= numboccur(true, map(t -> isprime(2*n-t), [P]))
    od:
    seq(A[i],i=1..100); # Robert Israel, Apr 30 2019
  • PARI
    a(n)=sum(i=2,primepi(floor(sqrt(2*n-2))),isprime(2*n-prime(i))) \\ Lear Young, Apr 11 2014