This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A240738 #10 Nov 07 2014 03:44:15 %S A240738 1,1,3,7,12,30,61,126,258,537,1083,2205,4465,9023,18192,36612,73633, %T A240738 147893,296818,595313,1193351,2391121,4789448,9590503,19199906, %U A240738 38430421,76910470,153901337,307932963,616076971,1232495756,2465545205,4931986957,9865425657 %N A240738 Number of compositions of n having exactly three fixed points. %H A240738 Joerg Arndt and Alois P. Heinz, <a href="/A240738/b240738.txt">Table of n, a(n) for n = 6..1000</a> %F A240738 a(n) ~ c * 2^n, where c = 0.01795631780689407343024911217251418606332716557572090051127381129853009022... . - _Vaclav Kotesovec_, Sep 07 2014 %e A240738 a(8) = 3: 1214, 1232, 12311. %e A240738 a(9) = 7: 1134, 1224, 1233, 12141, 12312, 12321, 123111. %e A240738 a(10) = 12: 11341, 12115, 12142, 12241, 12313, 12322, 12331, 121411, 123112, 123121, 123211, 1231111. %p A240738 b:= proc(n, i) option remember; `if`(n=0, 1, series( %p A240738 add(b(n-j, i+1)*`if`(i=j, x, 1), j=1..n), x, 4)) %p A240738 end: %p A240738 a:= n-> coeff(b(n, 1), x, 3): %p A240738 seq(a(n), n=6..45); %t A240738 b[n_, i_] := b[n, i] = If[n == 0, 1, Series[Sum[b[n-j, i+1]*If[i == j, x, 1], {j, 1, n}], {x, 0, 4}]]; a[n_] := SeriesCoefficient[b[n, 1], {x, 0, 3}]; Table[a[n], {n, 6, 45}] (* _Jean-François Alcover_, Nov 07 2014, after Maple *) %Y A240738 Column k=3 of A238349 and of A238350. %K A240738 nonn %O A240738 6,3 %A A240738 _Joerg Arndt_ and _Alois P. Heinz_, Apr 11 2014