cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A240756 Number of n X 2 0..3 arrays with no element equal to one plus the sum of elements to its left or zero plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest or zero plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

5, 6, 12, 16, 16, 35, 35, 36, 65, 83, 102, 172, 191, 230, 381, 458, 576, 905, 1064, 1362, 2090, 2514, 3267, 4869, 5894, 7740, 11297, 13853, 18318, 26249, 32499, 43165, 60950, 76216, 101501, 141589, 178559, 238124, 328924, 418014, 557746, 764306, 977771
Offset: 1

Views

Author

R. H. Hardin, Apr 12 2014

Keywords

Examples

			Some solutions for n=4:
..3..1....3..3....3..3....3..3....3..1....2..2....3..3....3..1....2..2....3..1
..2..2....2..1....2..2....2..1....2..2....3..1....2..1....2..2....3..1....2..2
..3..1....3..1....3..3....3..3....3..1....3..2....3..3....3..1....3..1....3..1
..2..2....2..2....2..2....2..1....2..1....3..2....2..2....3..1....2..2....3..2
		

Crossrefs

Column 2 of A240760.

Formula

Empirical: a(n) = 3*a(n-3) + a(n-5) - 2*a(n-8) - 4*a(n-9) - a(n-11) + 2*a(n-14) for n>17.
Empirical g.f.: x*(5 + 6*x + 12*x^2 + x^3 - 2*x^4 - 6*x^5 - 19*x^6 - 24*x^7 - 46*x^8 - 6*x^9 + 7*x^10 + 27*x^11 + 8*x^12 + 5*x^13 - 2*x^14 - x^15 - x^16) / ((1 + x)*(1 - x + x^2)*(1 - x^2 - x^3)*(1 - 2*x^3)*(1 + x^2 - x^3 + x^4 - x^5)). - Colin Barker, Oct 29 2018

A240757 Number of n X 3 0..3 arrays with no element equal to one plus the sum of elements to its left or zero plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest or zero plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

11, 9, 19, 24, 25, 35, 45, 76, 117, 180, 265, 365, 533, 786, 1220, 1796, 2728, 4087, 6140, 9060, 13625, 20484, 30734, 46161, 69561, 104127, 156807, 235060, 353693, 530499, 798289, 1200045, 1804325, 2711062, 4074989, 6123683, 9207099, 13837742
Offset: 1

Views

Author

R. H. Hardin, Apr 12 2014

Keywords

Comments

Column 3 of A240760.

Examples

			Some solutions for n=4
..2..2..2....2..2..2....2..2..2....3..1..3....2..1..1....3..1..3....2..2..2
..3..3..1....3..3..1....3..1..3....2..2..2....3..3..2....2..2..2....3..3..1
..2..0..2....2..2..2....2..0..2....3..1..2....2..1..2....2..1..3....2..2..2
..2..0..2....2..1..3....2..0..1....2..1..2....2..0..2....2..1..2....2..1..2
		

Crossrefs

Cf. A240760.

Formula

Empirical: a(n) = 5*a(n-5) +4*a(n-6) +a(n-7) +4*a(n-8) +5*a(n-9) -6*a(n-10) -12*a(n-11) -a(n-12) -13*a(n-13) -16*a(n-14) -7*a(n-15) +13*a(n-16) +2*a(n-17) +20*a(n-18) +24*a(n-19) +15*a(n-20) -3*a(n-21) -2*a(n-22) -20*a(n-23) -44*a(n-24) -11*a(n-25) +9*a(n-26) -82*a(n-27) -30*a(n-28) +19*a(n-29) -21*a(n-30) -108*a(n-31) +132*a(n-32) +43*a(n-33) -68*a(n-34) +17*a(n-35) +171*a(n-36) -171*a(n-37) +66*a(n-38) +206*a(n-39) -46*a(n-40) -124*a(n-41) +214*a(n-42) -29*a(n-43) -283*a(n-44) +123*a(n-45) +129*a(n-46) -251*a(n-47) -6*a(n-48) +164*a(n-49) -17*a(n-50) -121*a(n-51) +216*a(n-52) +51*a(n-53) -79*a(n-54) +40*a(n-55) +58*a(n-56) -21*a(n-57) -16*a(n-58) +32*a(n-59) -3*a(n-60) -47*a(n-61) -29*a(n-62) -9*a(n-63) -2*a(n-64) -11*a(n-65) -2*a(n-66) +10*a(n-67) -6*a(n-69) +12*a(n-70) +3*a(n-71) -4*a(n-72) -3*a(n-73) +3*a(n-74) +a(n-75) -3*a(n-76) for n>84.

A240758 Number of nX4 0..3 arrays with no element equal to one plus the sum of elements to its left or zero plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest or zero plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

25, 42, 142, 348, 653, 1809, 3606, 8307, 20609, 42658, 103913, 235174, 519261, 1234747, 2728224, 6283093, 14453348, 32323190, 74859774, 169422762, 385308220, 885034945, 2001772191, 4581389621, 10446058187, 23735064262, 54294354277
Offset: 1

Views

Author

R. H. Hardin, Apr 12 2014

Keywords

Comments

Column 4 of A240760

Examples

			Some solutions for n=4
..3..3..1..1....2..2..2..2....2..2..2..2....3..3..1..1....3..3..2..3
..2..0..2..3....3..1..3..3....3..1..3..1....2..0..2..3....2..0..1..1
..2..0..2..3....2..2..2..2....2..0..2..2....3..1..0..3....3..1..0..3
..2..0..0..2....2..0..0..2....2..1..1..3....3..1..2..1....3..2..0..1
		

A240759 Number of nX5 0..3 arrays with no element equal to one plus the sum of elements to its left or zero plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest or zero plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

57, 124, 553, 1750, 5325, 21859, 66809, 222091, 811643, 2448916, 9024626, 30179690, 99789149, 353161702, 1157895846, 3982409016, 13642548710, 45571813573, 157078910184, 529972106693, 1796868367572, 6142685239467, 20734748809544
Offset: 1

Views

Author

R. H. Hardin, Apr 12 2014

Keywords

Comments

Column 5 of A240760

Examples

			Some solutions for n=4
..3..1..2..2..2....2..2..3..1..3....2..1..1..3..1....2..2..2..1..2
..2..0..0..1..1....3..1..0..2..2....3..3..0..2..2....3..1..0..0..3
..3..3..0..0..1....3..2..0..0..3....2..2..2..0..1....2..2..0..0..3
..2..1..3..2..3....2..0..0..1..3....2..0..0..2..2....2..0..0..2..3
		

A240761 Number of 2Xn 0..3 arrays with no element equal to one plus the sum of elements to its left or zero plus the sum of the elements above it or zero plus the sum of the elements diagonally to its northwest or zero plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

2, 6, 9, 42, 124, 474, 1440, 5239, 16730, 58945, 192711, 666682, 2209028, 7562090, 25254050, 85922148, 288250557, 977287148, 3287088851, 11122488393, 37465304475, 126628657804, 426895509278, 1441942470916, 4863435928395
Offset: 1

Views

Author

R. H. Hardin, Apr 12 2014

Keywords

Comments

Row 2 of A240760

Examples

			Some solutions for n=4
..3..1..3..3....2..2..2..2....2..2..3..3....2..2..2..2....3..3..2..3
..2..2..2..1....3..1..0..3....3..1..0..2....3..3..1..3....2..0..0..1
		

A240762 Number of 3Xn 0..3 arrays with no element equal to one plus the sum of elements to its left or zero plus the sum of the elements above it or zero plus the sum of the elements diagonally to its northwest or zero plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

4, 12, 19, 142, 553, 4112, 18373, 131958, 625820, 4472258, 21760942, 154039075, 763999159, 5342021291, 26913960199, 185826785482, 949177894331, 6473768540990, 33478372193270, 225722723781992, 1180496482754391
Offset: 1

Views

Author

R. H. Hardin, Apr 12 2014

Keywords

Comments

Row 3 of A240760

Examples

			Some solutions for n=4
..3..3..1..3....3..1..3..3....3..3..1..1....2..1..2..3....2..2..2..1
..2..2..0..2....2..2..2..2....2..0..2..2....3..3..0..1....3..1..3..3
..2..0..0..2....2..0..0..2....2..1..1..2....2..2..3..3....2..2..0..2
		
Showing 1-6 of 6 results.