cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240780 Number of nX5 0..1 arrays with no element equal to fewer vertical neighbors than horizontal neighbors, with new values 0..1 introduced in row major order.

This page as a plain text file.
%I A240780 #6 Jul 23 2025 11:07:02
%S A240780 1,9,97,959,10150,106411,1120383,11791412,124095989,1306056075,
%T A240780 13745692417,144667727920,1522567835402,16024396462730,
%U A240780 168650144696133,1774973019338383,18680856897784860,196608292474782756
%N A240780 Number of nX5 0..1 arrays with no element equal to fewer vertical neighbors than horizontal neighbors, with new values 0..1 introduced in row major order.
%C A240780 Column 5 of A240783
%H A240780 R. H. Hardin, <a href="/A240780/b240780.txt">Table of n, a(n) for n = 1..210</a>
%F A240780 Empirical: a(n) = 11*a(n-1) +7*a(n-2) -123*a(n-3) -100*a(n-4) +564*a(n-5) +1376*a(n-6) -850*a(n-7) -2574*a(n-8) -15069*a(n-9) -48432*a(n-10) +116629*a(n-11) +324534*a(n-12) -546638*a(n-13) -1305652*a(n-14) +1415839*a(n-15) +2861430*a(n-16) -181783*a(n-17) +1142736*a(n-18) -3485531*a(n-19) +103541*a(n-20) +3757015*a(n-21) -3932650*a(n-22) -2493412*a(n-23) +1567853*a(n-24) +1326412*a(n-25) -3258442*a(n-26) -317605*a(n-27) -4294565*a(n-28) -451364*a(n-29) -983122*a(n-30) +1528646*a(n-31) +4998901*a(n-32) +2015845*a(n-33) -351008*a(n-34) +1590161*a(n-35) +241188*a(n-36) -1593888*a(n-37) -938771*a(n-38) -106281*a(n-39) +189935*a(n-40) +114894*a(n-41) -8940*a(n-42) -15519*a(n-43) +17746*a(n-44) +13164*a(n-45) -7056*a(n-46) -7716*a(n-47) +20*a(n-48) +1377*a(n-49) +35*a(n-50) -3*a(n-51) +38*a(n-52) -8*a(n-53) -4*a(n-54)
%e A240780 Some solutions for n=4
%e A240780 ..0..1..1..0..1....0..1..0..1..1....0..1..0..1..0....0..1..0..1..0
%e A240780 ..0..1..1..0..1....1..0..1..1..1....1..0..1..0..0....1..0..1..0..1
%e A240780 ..0..1..1..0..0....1..0..1..1..1....1..1..0..0..1....1..1..0..0..1
%e A240780 ..1..0..1..0..0....0..1..0..1..0....1..1..0..1..0....0..1..0..0..1
%K A240780 nonn
%O A240780 1,2
%A A240780 _R. H. Hardin_, Apr 12 2014