cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A240789 Number of n X 2 0..3 arrays with no element equal to one plus the sum of elements to its left or one plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest or zero plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

3, 4, 5, 10, 13, 14, 30, 32, 36, 67, 79, 97, 173, 191, 232, 402, 464, 580, 960, 1104, 1400, 2250, 2637, 3388, 5280, 6255, 8117, 12342, 14819, 19374, 28826, 35008, 46021, 67233, 82554, 108956, 156715, 194316, 257170, 365065, 456688, 605532, 850096, 1071831
Offset: 1

Views

Author

R. H. Hardin, Apr 12 2014

Keywords

Examples

			All solutions for n=4:
..3..3....3..3....3..3....3..3....3..2....3..2....3..3....3..2....3..3....3..3
..2..1....2..2....2..1....2..2....3..1....3..1....2..2....3..1....2..2....2..2
..3..3....3..1....3..3....3..1....2..2....2..1....3..3....2..2....3..1....3..1
..2..2....2..2....2..1....3..2....3..1....3..3....2..2....3..3....3..1....2..1
		

Crossrefs

Column 2 of A240792.

Formula

Empirical: a(n) = 4*a(n-3) + a(n-5) - 3*a(n-6) - 3*a(n-8) - 4*a(n-9) + a(n-11) + 4*a(n-12) + 3*a(n-14) - 2*a(n-17) for n>19.
Empirical g.f.: x*(3 + 4*x + 5*x^2 - 2*x^3 - 3*x^4 - 9*x^5 - 5*x^6 - 13*x^7 - 6*x^8 - 12*x^9 + 7*x^10 + 12*x^11 + 26*x^12 + 8*x^13 - 8*x^14 - 17*x^15 - 5*x^16 + 5*x^17 + 2*x^18) / ((1 - x)*(1 + x)*(1 - x + x^2)*(1 + x + x^2)*(1 - x^2 - x^3)*(1 - 2*x^3)*(1 + x^2 - x^3 + x^4 - x^5)). - Colin Barker, Oct 29 2018

A240790 Number of n X 3 0..3 arrays with no element equal to one plus the sum of elements to its left or one plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest or zero plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

4, 5, 8, 27, 49, 50, 89, 115, 182, 289, 425, 651, 992, 1486, 2255, 3349, 5040, 7706, 11754, 17525, 26365, 39661, 59893, 89903, 135336, 203491, 306233, 460867, 692971, 1040765, 1565790, 2353754, 3540545, 5319995, 8000324, 12027862, 18084789
Offset: 1

Views

Author

R. H. Hardin, Apr 12 2014

Keywords

Comments

Column 3 of A240792.

Examples

			Some solutions for n=4:
..3..2..3....3..2..3....3..2..3....3..2..3....3..2..3....3..2..3....3..2..3
..3..2..3....3..1..3....3..1..3....3..2..3....3..2..1....3..2..1....3..2..3
..2..2..2....2..1..1....2..2..2....2..2..2....2..0..2....2..2..3....2..2..2
..2..0..2....2..0..1....3..1..3....3..1..3....2..0..1....2..0..2....2..1..2
		

Crossrefs

Cf. A240792.

Formula

Empirical: a(n) = 5*a(n-5) +4*a(n-6) +a(n-7) +4*a(n-8) +5*a(n-9) -6*a(n-10) -12*a(n-11) -a(n-12) -13*a(n-13) -16*a(n-14) -7*a(n-15) +13*a(n-16) +2*a(n-17) +20*a(n-18) +24*a(n-19) +15*a(n-20) -3*a(n-21) -2*a(n-22) -20*a(n-23) -44*a(n-24) -11*a(n-25) +9*a(n-26) -82*a(n-27) -30*a(n-28) +19*a(n-29) -21*a(n-30) -108*a(n-31) +132*a(n-32) +43*a(n-33) -68*a(n-34) +17*a(n-35) +171*a(n-36) -171*a(n-37) +66*a(n-38) +206*a(n-39) -46*a(n-40) -124*a(n-41) +214*a(n-42) -29*a(n-43) -283*a(n-44) +123*a(n-45) +129*a(n-46) -251*a(n-47) -6*a(n-48) +164*a(n-49) -17*a(n-50) -121*a(n-51) +216*a(n-52) +51*a(n-53) -79*a(n-54) +40*a(n-55) +58*a(n-56) -21*a(n-57) -16*a(n-58) +32*a(n-59) -3*a(n-60) -47*a(n-61) -29*a(n-62) -9*a(n-63) -2*a(n-64) -11*a(n-65) -2*a(n-66) +10*a(n-67) -6*a(n-69) +12*a(n-70) +3*a(n-71) -4*a(n-72) -3*a(n-73) +3*a(n-74) +a(n-75) -3*a(n-76) for n>87.

A240791 Number of nX4 0..3 arrays with no element equal to one plus the sum of elements to its left or one plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest or zero plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

7, 10, 19, 37, 85, 142, 386, 979, 1988, 5128, 10616, 25230, 58238, 125528, 302384, 670325, 1520808, 3524961, 7865967, 18151793, 41320633, 93575521, 215154289, 487353355, 1112746546, 2542170679, 5772347607, 13196888198, 30049864101
Offset: 1

Views

Author

R. H. Hardin, Apr 12 2014

Keywords

Comments

Column 4 of A240792

Examples

			Some solutions for n=4
..3..2..3..2....3..2..3..2....3..2..3..2....3..2..3..2....3..2..3..2
..3..2..3..2....3..2..3..2....3..2..3..2....3..2..1..1....3..2..1..2
..2..2..0..3....2..0..0..2....2..2..0..2....2..0..2..2....2..0..0..2
..2..0..2..3....3..3..0..2....2..0..0..2....2..0..0..1....2..0..0..2
		

A240793 Number of 2Xn 0..3 arrays with no element equal to one plus the sum of elements to its left or one plus the sum of the elements above it or zero plus the sum of the elements diagonally to its northwest or zero plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

3, 4, 5, 10, 14, 24, 53, 70, 140, 237, 396, 730, 1242, 2166, 3743, 6547, 11397, 19760, 34622, 59868, 104358, 181794, 315863, 550264, 957027, 1665335, 2897587, 5042553, 8774919, 15266419, 26569228, 46226952, 80439383, 139977422, 243558497
Offset: 1

Views

Author

R. H. Hardin, Apr 12 2014

Keywords

Comments

Row 2 of A240792

Examples

			Some solutions for n=4
..3..2..3..2....3..2..3..3....3..3..2..3....3..2..3..2....3..2..3..2
..3..2..1..2....3..2..1..1....2..1..2..3....3..2..3..2....3..2..1..1
		

Formula

Empirical: a(n) = 2*a(n-2) +4*a(n-3) -a(n-4) -3*a(n-5) -a(n-6) +a(n-7) -9*a(n-8) -9*a(n-9) +8*a(n-10) +15*a(n-11) +4*a(n-12) -15*a(n-13) +2*a(n-14) +3*a(n-15) +7*a(n-16) -7*a(n-17) for n>21

A240794 Number of 3Xn 0..3 arrays with no element equal to one plus the sum of elements to its left or one plus the sum of the elements above it or zero plus the sum of the elements diagonally to its northwest or zero plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

4, 5, 8, 19, 34, 82, 278, 669, 1969, 3553, 9374, 26252, 60465, 172383, 389427, 951837, 2531963, 6160868, 15935881, 39165416, 97133522, 245493084, 614301686, 1554508080, 3857975809, 9676587733, 24254427054, 60670014406, 152847249733
Offset: 1

Views

Author

R. H. Hardin, Apr 12 2014

Keywords

Comments

Row 3 of A240792

Examples

			Some solutions for n=4
..3..2..3..2....3..2..3..2....3..2..3..3....3..2..3..2....3..2..3..3
..3..2..1..1....3..2..1..2....3..2..1..2....3..2..1..1....3..2..1..1
..2..0..0..1....2..2..0..2....2..2..3..1....2..0..0..2....2..2..2..2
		

A240795 Number of 4Xn 0..3 arrays with no element equal to one plus the sum of elements to its left or one plus the sum of the elements above it or zero plus the sum of the elements diagonally to its northwest or zero plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

7, 10, 27, 37, 132, 552, 2277, 11588, 35799, 109054, 467005, 1826688, 8078985, 27489845, 92673526, 369573835, 1387676052, 5728088537, 20522163467, 72766642122, 281548168173, 1050333422732, 4157767214229, 15271536502557
Offset: 1

Views

Author

R. H. Hardin, Apr 12 2014

Keywords

Comments

Row 4 of A240792

Examples

			Some solutions for n=4
..3..2..3..2....3..2..3..2....3..2..3..2....3..2..3..2....3..2..3..2
..3..2..3..2....3..2..1..1....3..2..1..2....3..2..1..1....3..2..1..1
..2..0..0..2....2..2..3..1....2..2..0..2....2..2..3..1....2..2..3..2
..2..0..1..2....3..1..2..2....3..1..3..2....3..1..3..2....3..1..3..1
		
Showing 1-6 of 6 results.