This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A240813 #19 Oct 25 2014 01:28:40 %S A240813 6,0,14,164,54,13,0,0,10,11,60,37,11,12,13,2354,30,13,13,14,15,282,63, %T A240813 44,14,15,17,18,1336,368,31,15,17,18,19,20,100,47,49,17,18,19,20,21, %U A240813 22,1254,46,38,18,19,20,21,22,23,24,366,108,80,19,20,21,22,23 %N A240813 Triangle read by rows: T(n,k) (n >= 1, 1 <= k <= n) = length (or lifetime) of the meta-Fibonacci sequence f(1) = ... = f(n) = 1; f(i)=f(i-f(i-k))+f(i-f(i-n)) if that sequence is only defined for finitely many terms, or 0 if that sequence is infinite. %C A240813 The zero entries (except T(4,1)) are only conjectural. %D A240813 D. R. Hofstadter, Curious patterns and non-patterns in a family of meta-Fibonacci recursions, Lecture in Doron Zeilberger's Experimental Mathematics Seminar, Rutgers University, April 10 2014. %H A240813 Lars Blomberg, <a href="/A240813/b240813.txt">Table of n, a(n) for n = 1..10000</a>, "infinity" = 10^8. %H A240813 B. Balamohan, A. Kuznetsov and S. Tanny, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Tanny/tanny3.html">On the behavior of a variant of Hofstadter's Q-sequence</a>, J. Integer Sequences, Vol. 10 (2007), #07.7.1. %H A240813 D. R. Hofstadter, Curious patterns and non-patterns in a family of meta-Fibonacci recursions, Lecture in Doron Zeilberger's Experimental Mathematics Seminar, Rutgers University, April 10 2014; <a href="https://vimeo.com/91708646">Part 1</a>, <a href="https://vimeo.com/91710600">Part 2</a>. %H A240813 <a href="/index/Ho#Hofstadter">Index entries for Hofstadter-type sequences</a> %e A240813 Triangle begins: %e A240813 6, %e A240813 0, 14, %e A240813 164, 54, 13, %e A240813 0, 0, 10, 11, %e A240813 60, 37, 11, 12, 13, %e A240813 2354, 30, 13, 13, 14, 15, %e A240813 282, 63, 44, 14, 15, 17, 18, %e A240813 1336, 368, 31, 15, 17, 18, 19 %e A240813 ... %Y A240813 Diagonals give A134680, A240811, A240812. %Y A240813 See A240816 for another version. %K A240813 nonn,tabl %O A240813 1,1 %A A240813 _N. J. A. Sloane_, Apr 15 2014 %E A240813 More terms from _Lars Blomberg_, Oct 24 2014