A240829 a(1)=-1, a(2)=0, a(3)=1; thereafter a(n) = Sum(a(n-i-s-a(n-i-1)),i=0..k-1) where s=0, k=3.
-1, 0, 1, 3, 2, 4, 4, 7, 4, 7, 7, 9, 8, 9, 11, 10, 10, 13, 15, 13, 13, 13, 18, 15, 18, 18, 18, 18, 18, 23, 23, 20, 19, 23, 28, 27, 23, 25, 27, 28, 25, 26, 28, 30, 31, 32, 33, 33, 32, 34, 33, 38, 36, 39, 34, 36, 36, 39, 39, 39, 39, 44, 46, 46, 43, 46, 46, 44, 44, 49, 49, 49, 46, 51, 48, 51, 51, 54, 54, 54, 54, 54
Offset: 1
References
- Callaghan, Joseph, John J. Chew III, and Stephen M. Tanny. "On the behavior of a family of meta-Fibonacci sequences." SIAM Journal on Discrete Mathematics 18.4 (2005): 794-824. See Fig. 1.7.
Links
Programs
-
Maple
#T_s,k(n) from Callaghan et al. Eq. (1.6). s:=0; k:=3; a:=proc(n) option remember; global s,k; if n <= 3 then n-2 else add(a(n-i-s-a(n-i-1)),i=0..k-1); fi; end; t1:=[seq(a(n),n=1..100)];