cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240837 Partitions as specified by composition into an even number of parts.

This page as a plain text file.
%I A240837 #5 Apr 16 2014 11:10:12
%S A240837 1,1,1,2,1,1,1,2,2,3,2,1,1,1,1,1,2,2,2,3,3,2,2,1,4,3,1,2,1,1,3,2,1,1,
%T A240837 1,1,1,2,2,2,2,3,3,3,2,2,2,1,4,4,3,3,1,2,2,1,1,3,3,2,5,4,1,3,1,1,4,2,
%U A240837 2,1,1,1,3,2,2,4,3,3,2,1
%N A240837 Partitions as specified by composition into an even number of parts.
%C A240837 The composition specifies the run lengths of the boundary of the Ferrers diagram of the partition.
%C A240837 Taking the n-th row as multiple partitions, it consists of those partitions with the first hook size (largest part plus number of parts minus 1) equal to n-1. The number of integers in this n-th row is A001792(n-2), and the row sum is A049611(n-1).
%e A240837 For row 11, the 11th row in A240750 is 2,1,1,1. This gives us the Ferrers diagram:
%e A240837 * * *
%e A240837 * *
%e A240837 with boundary 2 horizontal, 1 vertical, 1 horizontal, 1 vertical. This is the diagram for partition [2,2,1].
%e A240837 The table starts:
%e A240837 []
%e A240837 (none)
%e A240837 1
%e A240837 1,1; 2
%e A240837 1,1,1; 2,2; 3; 2,1
%e A240837 1,1,1,1; 2,2,2; 3,3; 2,2,1; 4; 3,1; 2,1,1; 3,2
%o A240837 (PARI) evil(n) = local(r=0, m=n); while(m>0, if(m%2==1, r=1-r); m\=2); n*2+r
%o A240837 A066099row(n) = {local(v=vector(n), j=0, k=0);
%o A240837    while(n>0, k++; if(n%2==1, v[j++]=k; k=0); n\=2);
%o A240837    vector(j, i, v[j-i+1])}
%o A240837 A240750row(n) = A066099row(evil(n))
%o A240837 partpath(v) = {local(j=0,n=0,m=0,r);
%o A240837    forstep(k=1,#v,2,n+=v[k];m+=v[k+1]);
%o A240837    r=vector(n);
%o A240837    forstep(k=1,#v,2,for(i=1,v[k],r[j++]=m);m-=v[k+1]);
%o A240837    r}
%o A240837 arow(n) = partpath(A240750row(n))
%Y A240837 A240750, A066099, A125106.
%K A240837 nonn,tabf
%O A240837 2,4
%A A240837 _Franklin T. Adams-Watters_, Apr 13 2014