A240851 Number of partitions p of n into distinct parts not including mean(p).
0, 0, 0, 1, 1, 2, 2, 4, 5, 5, 9, 11, 10, 17, 21, 21, 27, 37, 40, 53, 50, 69, 88, 103, 98, 126, 164, 183, 199, 255, 238, 339, 359, 437, 511, 510, 565, 759, 863, 969, 950, 1259, 1224, 1609, 1750, 1866, 2303, 2589, 2497, 3061, 3412, 4080, 4485, 5119, 5168, 6031
Offset: 0
Examples
a(9) counts these 5 partitions: 81, 72, 63. 621, 54.
Programs
-
Mathematica
z = 70; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &]; Table[Count[f[n], p_ /; MemberQ[p, Mean[p]]], {n, 0, z}] (* A240850 *) Table[Count[f[n], p_ /; ! MemberQ[p, Mean[p]]], {n, 0, z}] (* A240851 *)
-
Python
from sympy.utilities.iterables import partitions def A240851(n): return sum(1 for s,p in partitions(n,size=True) if max(p.values(),default=0)==1 and (n%s or n//s not in p)) # Chai Wah Wu, Sep 21 2023