This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A240857 #16 Nov 12 2024 09:03:41 %S A240857 0,0,1,1,0,1,0,1,1,2,1,1,2,0,1,1,2,0,1,1,2,2,0,1,1,2,1,2,0,1,1,2,1,2, %T A240857 2,3,1,1,2,1,2,2,3,0,1,1,2,1,2,2,3,0,1,1,2,2,1,2,2,3,0,1,1,2,1,2,1,2, %U A240857 2,3,0,1,1,2,1,2,2,3,2,2,3,0,1,1,2,1 %N A240857 Triangle read by rows: T(0,0) = 0; T(n+1,k) = T(n,k+1), 0 <= k < n; T(n+1,n) = T(n,0); T(n+1,n+1) = T(n,0)+1. %C A240857 Let h be the initial term of row n, to get row n+1, remove h and then append h and h+1. %H A240857 Reinhard Zumkeller, <a href="/A240857/b240857.txt">Rows n = 0..125 of triangle, flattened</a> %F A240857 T(n,k) = A048881(n+k), 0 <= k <= n. %F A240857 For n > 0: T(n,A035327(n)) = 0. %e A240857 . 0: 0 %e A240857 . 1: 0 1 %e A240857 . 2: 1 0 1 %e A240857 . 3: 0 1 1 2 %e A240857 . 4: 1 1 2 0 1 %e A240857 . 5: 1 2 0 1 1 2 %e A240857 . 6: 2 0 1 1 2 1 2 %e A240857 . 7: 0 1 1 2 1 2 2 3 %e A240857 . 8: 1 1 2 1 2 2 3 0 1 %e A240857 . 9: 1 2 1 2 2 3 0 1 1 2 %e A240857 . 10: 2 1 2 2 3 0 1 1 2 1 2 %e A240857 . 11: 1 2 2 3 0 1 1 2 1 2 2 3 %e A240857 . 12: 2 2 3 0 1 1 2 1 2 2 3 1 2 %e A240857 . 13: 2 3 0 1 1 2 1 2 2 3 1 2 2 3 %e A240857 . 14: 3 0 1 1 2 1 2 2 3 1 2 2 3 2 3 %e A240857 . 15: 0 1 1 2 1 2 2 3 1 2 2 3 2 3 3 4 . %t A240857 T[n_, k_] := DigitCount[n + k + 1, 2, 1] - 1; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* _Amiram Eldar_, Aug 01 2023 *) %o A240857 (Haskell) %o A240857 a240857 n k = a240857_tabl !! n !! k %o A240857 a240857_row n = a240857_tabl !! n %o A240857 a240857_tabl = iterate (\(x:xs) -> xs ++ [x, x + 1]) [0] %o A240857 (Python) %o A240857 from math import isqrt %o A240857 def A240857(n): return (n-((r:=(m:=isqrt(k:=n+1<<1))+(k>m*(m+1)))*(r-3)>>1)).bit_count()-1 # _Chai Wah Wu_, Nov 11 2024 %Y A240857 Cf. A048881 (left edge), A000120 (right edge), A000788 (row sums), A000523 (row maxima), A240883 (central terms). %Y A240857 Cf. A035327. %K A240857 nonn,tabl %O A240857 0,10 %A A240857 _Reinhard Zumkeller_, Apr 14 2014