This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A240861 #24 Aug 11 2025 10:48:33 %S A240861 1,0,1,1,2,2,2,4,4,5,6,9,10,12,14,18,22,26,30,36,42,51,60,70,81,94, %T A240861 110,128,148,172,198,226,260,298,342,390,446,508,577,654,742,840,951, %U A240861 1074,1212,1366,1538,1728,1940,2176,2440,2732,3056,3416,3814,4254 %N A240861 Number of partitions p of n into distinct parts not including the number of parts. %H A240861 Alois P. Heinz, <a href="/A240861/b240861.txt">Table of n, a(n) for n = 0..4000</a> %H A240861 Atul Dixit, Gaurav Kumar, and Aviral Srivastava, <a href="https://arxiv.org/abs/2508.04359">Non-Rascoe partitions and a rank parity function associated to the Rogers-Ramanujan partitions</a>, arXiv:2508.04359 [math.CO], 2025. See references. %F A240861 a(n) = A000009(n) - A240855(n). %e A240861 a(10) counts these 6 partitions: {10}, {9,1}, {7,3}, {7,2,1}, {6,4}, {5,4,1}. %p A240861 g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add( %p A240861 `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n) %p A240861 end: %p A240861 b:= proc(n, i, p) option remember; `if`(i*(i+1)/2<n, 0, %p A240861 `if`(n=0, [x^p, 0], (f-> [add(coeff(f[1], x, j)*x^j %p A240861 , j=i+1..degree(f[1])), f[2]+coeff(f[1], x, i)])( %p A240861 b(n-i, min(n-i, i-1), p+1))+b(n, i-1, p))) %p A240861 end: %p A240861 a:= n-> g(n)-b(n$2, 0)[2]: %p A240861 seq(a(n), n=0..55); # _Alois P. Heinz_, Mar 14 2024 %t A240861 z = 40; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &]; %t A240861 Table[Count[f[n], p_ /; MemberQ[p, Length[p]]], {n, 0, z}] (* A240855 *) %t A240861 Table[Count[f[n], p_ /; !MemberQ[p, Length[p]]], {n, 0, z}] (* A240861 *) %Y A240861 Cf. A000009, A240855. %K A240861 nonn,easy %O A240861 0,5 %A A240861 _Clark Kimberling_, Apr 14 2014 %E A240861 a(0) changed to 1 by _Alois P. Heinz_, Mar 14 2024