cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240873 Number of partitions p of n into distinct parts such that max(p) = 5 + min(p).

This page as a plain text file.
%I A240873 #10 Jun 19 2025 09:10:34
%S A240873 0,0,0,0,0,0,0,1,0,2,1,2,3,3,3,4,4,4,5,4,3,6,4,4,5,3,4,6,4,4,4,4,4,6,
%T A240873 4,3,5,4,4,6,3,4,5,4,4,5,4,4,5,4,3,6,4,4,5,3,4,6,4,4,4,4,4,6,4,3,5,4,
%U A240873 4,6,3,4,5,4,4,5,4,4,5,4,3
%N A240873 Number of partitions p of n into distinct parts such that max(p) = 5 + min(p).
%H A240873 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (-1,-1,-1,-1,0,1,1,1,1,1).
%e A240873 a(12) counts these 3 partitions:  732, 651, 6321.
%t A240873 z = 40; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@Split@#] == 1 &];
%t A240873 Table[Count[f[n], p_ /; Max[p] == 2 + Min[p]], {n, 0, z}] (* A171182 *)
%t A240873 Table[Count[f[n], p_ /; Max[p] == 3 + Min[p]], {n, 0, z}] (* A240871 *)
%t A240873 Table[Count[f[n], p_ /; Max[p] == 4 + Min[p]], {n, 0, z}] (* A240872 *)
%t A240873 Table[Count[f[n], p_ /; Max[p] == 5 + Min[p]], {n, 0, z}] (* A240873 *)
%Y A240873 Cf. A171182, A240871, A240872.
%K A240873 nonn,easy
%O A240873 0,10
%A A240873 _Clark Kimberling_, Apr 15 2014