cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A240888 Number of n X 3 0..2 arrays with no element equal to a different number of vertical neighbors than horizontal neighbors, with new values 0..2 introduced in row major order.

Original entry on oeis.org

2, 11, 57, 289, 1485, 7609, 38981, 199761, 1023597, 5245049, 26876501, 137719297, 705694973, 3616090505, 18529407461, 94947553233, 486525966349, 2493034391385, 12774694280053, 65459511713057, 335424674724381, 1718767975363881
Offset: 1

Views

Author

R. H. Hardin, Apr 14 2014

Keywords

Examples

			Some solutions for n=4:
..0..1..0....0..1..2....0..1..1....0..1..0....0..1..2....0..1..1....0..1..0
..2..0..1....2..0..0....2..1..1....2..0..2....1..0..1....2..1..1....1..0..1
..0..1..2....1..0..0....1..0..2....0..2..0....2..1..0....1..2..2....0..2..0
..1..0..1....2..1..2....2..1..0....1..0..1....0..2..1....0..2..2....2..1..2
		

Crossrefs

Column 3 of A240893.

Formula

Empirical: a(n) = 3*a(n-1) + 8*a(n-2) + 14*a(n-3) + 4*a(n-4).
Empirical g.f.: x*(2 + 5*x + 8*x^2 + 2*x^3) / (1 - 3*x - 8*x^2 - 14*x^3 - 4*x^4). - Colin Barker, Oct 29 2018

A240889 Number of nX4 0..2 arrays with no element equal to a different number of vertical neighbors than horizontal neighbors, with new values 0..2 introduced in row major order.

Original entry on oeis.org

4, 36, 289, 2362, 19065, 154858, 1255585, 10186158, 82615013, 670126562, 5435464261, 44088312610, 357608156789, 2900631278142, 23527575671521, 190836751334954, 1547913820098569, 12555429390762018, 101839521640750945
Offset: 1

Views

Author

R. H. Hardin, Apr 14 2014

Keywords

Comments

Column 4 of A240893

Examples

			Some solutions for n=4
..0..1..2..1....0..1..2..1....0..1..2..0....0..1..2..1....0..1..0..2
..2..0..1..0....1..0..1..2....1..2..1..2....1..0..1..0....1..0..2..1
..0..2..0..2....0..1..0..1....2..0..2..0....0..2..0..2....0..2..1..0
..2..0..1..0....2..0..1..2....0..2..1..2....2..0..1..0....2..1..0..1
		

Formula

Empirical: a(n) = 8*a(n-1) +9*a(n-2) -63*a(n-3) +36*a(n-4) -405*a(n-5) -608*a(n-6) +600*a(n-7) +424*a(n-8) +4600*a(n-9) +10176*a(n-10) +9216*a(n-11) -2560*a(n-12) -29312*a(n-13) -40448*a(n-14) -30720*a(n-15) -16384*a(n-16)

A240890 Number of nX5 0..2 arrays with no element equal to a different number of vertical neighbors than horizontal neighbors, with new values 0..2 introduced in row major order.

Original entry on oeis.org

8, 116, 1485, 19065, 245268, 3146755, 40424861, 519218802, 6669141957, 85661208693, 1100266812500, 14132294288479, 181521187277681, 2331535718787322, 29947240904675409, 384655164983132569
Offset: 1

Views

Author

R. H. Hardin, Apr 14 2014

Keywords

Comments

Column 5 of A240893

Examples

			Some solutions for n=4
..0..1..2..1..0....0..1..1..2..0....0..1..1..2..0....0..1..2..1..2
..1..0..1..2..1....1..1..1..1..2....2..1..1..0..2....1..2..1..0..1
..2..1..0..1..0....1..1..1..1..0....1..0..0..1..0....2..1..0..2..2
..0..2..1..0..2....2..1..1..0..1....2..0..0..2..1....1..0..1..2..2
		

Formula

Empirical: a(n) = 16*a(n-1) -22*a(n-2) -276*a(n-3) +543*a(n-4) +1114*a(n-5) -24150*a(n-6) -6509*a(n-7) +197916*a(n-8) +80150*a(n-9) -592045*a(n-10) +4684412*a(n-11) +15106341*a(n-12) -17190009*a(n-13) -90244020*a(n-14) -91211136*a(n-15) -290130772*a(n-16) -407134336*a(n-17) +671095240*a(n-18) +2173631712*a(n-19) +6313455104*a(n-20) +12278947872*a(n-21) +8033752064*a(n-22) +6113760384*a(n-23) -31674604288*a(n-24) -122704805888*a(n-25) -110531544064*a(n-26) -270879311872*a(n-27) -593695940608*a(n-28) +82971942912*a(n-29) +283392655360*a(n-30) -69979668480*a(n-31) +3328745078784*a(n-32) +4282541146112*a(n-33) +2076075098112*a(n-34) +9789286383616*a(n-35) +7759030386688*a(n-36) +1140229931008*a(n-37) +7107835330560*a(n-38) -2054940524544*a(n-39) -10791105331200*a(n-40) -2076616687616*a(n-41) -14566381584384*a(n-42) -20598663151616*a(n-43) -2336462209024*a(n-44) -13056700579840*a(n-45) -3848290697216*a(n-46) +3298534883328*a(n-47) -4398046511104*a(n-48)

A240891 Number of nX6 0..2 arrays with no element equal to a different number of vertical neighbors than horizontal neighbors, with new values 0..2 introduced in row major order.

Original entry on oeis.org

16, 376, 7609, 154858, 3146755, 64074526, 1302610899, 26501432610, 539075345618, 10966382557858, 223082242117552, 4538081394098364, 92316133808933027, 1877950089801487198, 38202362639765816422, 777135231123406032012
Offset: 1

Views

Author

R. H. Hardin, Apr 14 2014

Keywords

Comments

Column 6 of A240893

Examples

			Some solutions for n=4
..0..1..2..0..2..1....0..1..0..1..0..1....0..1..0..2..1..0....0..0..1..0..1..0
..1..0..1..2..1..0....1..0..2..0..1..0....1..0..2..0..2..1....0..0..2..1..0..1
..0..2..0..1..2..1....0..2..1..2..0..1....0..2..0..1..1..0....2..1..0..2..1..0
..2..0..1..2..1..2....2..1..2..0..1..2....1..0..2..1..1..2....1..0..2..1..0..2
		

A240892 Number of nX7 0..2 arrays with no element equal to a different number of vertical neighbors than horizontal neighbors, with new values 0..2 introduced in row major order.

Original entry on oeis.org

32, 1216, 38981, 1255585, 40424861, 1302610899, 41971040844, 1352138182759, 43565815810587, 1403705064843757, 45228360174728351, 1457291782946371386, 46955159811511460603, 1512935850829951577045, 48748133543911846159969
Offset: 1

Views

Author

R. H. Hardin, Apr 14 2014

Keywords

Comments

Column 7 of A240893

Examples

			Some solutions for n=3
..0..1..0..1..2..0..1....0..1..0..1..0..1..2....0..1..0..2..1..2..0
..1..0..1..2..1..1..0....2..2..1..0..1..0..1....1..2..1..0..2..1..1
..0..1..2..0..1..1..2....2..2..0..2..0..1..0....0..1..2..1..0..1..1
		

A240887 Number of n X n 0..2 arrays with no element equal to a different number of vertical neighbors than horizontal neighbors, with new values 0..2 introduced in row major order.

Original entry on oeis.org

1, 4, 57, 2362, 245268, 64074526, 41971040844, 69012323813116, 284711573170326892
Offset: 1

Views

Author

R. H. Hardin, Apr 14 2014

Keywords

Comments

Diagonal of A240893

Examples

			Some solutions for n=4
..0..1..2..1....0..1..0..1....0..1..0..0....0..1..0..2....0..1..0..2
..2..0..1..0....1..0..2..0....1..2..0..0....2..0..1..0....1..0..2..0
..0..1..2..1....0..2..1..1....0..0..1..1....0..2..0..1....2..1..0..1
..1..2..1..2....2..0..1..1....0..0..1..1....2..0..1..2....0..2..1..0
		
Showing 1-6 of 6 results.