This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A240922 #21 Jan 09 2021 02:54:00 %S A240922 1260,1320,1380,1428,1440,1500,1560,1596,1620 %N A240922 Magic constants of associative 4 X 4 X 4 cubes composed of distinct prime numbers. %C A240922 A magic cube is associative if the sum of its any two elements that are symmetric about the cube center equals the same number, called the associativity constant of the cube. %C A240922 All magic 3 X 3 X 3 cubes are associative. %D A240922 Andrews W. S. Magic Squares & Cubes, Dover Publ, 1960 (original publication Open Court, 1917) %D A240922 William H. Benson and Oswald Jacoby. Magic Cubes. New Recreations. 1981. %D A240922 Gakuho Abe, Related Magic Squares with Prime Elements, JRM 10:2 1977-78, pp.96-97. %D A240922 A. W. Johnson, Jr., An Order 4 Prime Magic Cube, JRM 18:1, 1985-86, pp 5-7. %H A240922 Harvey Heinz, <a href="http://www.magic-squares.net/c-t-htm/c_prime.htm">Prime Number Magic Cubes</a> %H A240922 Natalia Makarova, <a href="/A240922/a240922.txt">Magic cubes corresponding to terms a(1)-a(6)</a> %H A240922 <a href="http://dxdy.ru/post835370.html#p835370">Discussion in forum dxdy.ru</a> (in Russian) %H A240922 <a href="http://primesmagicgames.altervista.org/wp/competitions/">Result for Magic Cubes of Prime Numbers</a> %e A240922 a(1)=1260 corresponds to the following cube: %e A240922 23 521 433 283 %e A240922 373 29 457 401 %e A240922 587 139 11 523 %e A240922 277 571 359 53 %e A240922 --------------- %e A240922 263 379 557 61 %e A240922 613 13 131 503 %e A240922 317 449 31 463 %e A240922 67 419 541 233 %e A240922 --------------- %e A240922 397 89 211 563 %e A240922 167 599 181 313 %e A240922 127 499 617 17 %e A240922 569 73 251 367 %e A240922 --------------- %e A240922 577 271 59 353 %e A240922 107 619 491 43 %e A240922 229 173 601 257 %e A240922 347 197 109 607 %Y A240922 Cf. A239671. %K A240922 nonn,more %O A240922 1,1 %A A240922 _Natalia Makarova_, Aug 02 2014