cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240943 Decimal expansion of the radius of convergence of Wedderburn-Etherington numbers g.f.

Original entry on oeis.org

4, 0, 2, 6, 9, 7, 5, 0, 3, 6, 7, 1, 4, 4, 1, 2, 9, 0, 9, 6, 9, 0, 4, 5, 3, 4, 8, 6, 5, 1, 0, 8, 3, 8, 0, 3, 4, 1, 7, 5, 5, 6, 7, 2, 1, 6, 2, 4, 9, 7, 2, 6, 5, 9, 2, 9, 1, 0, 5, 3, 4, 6, 4, 6, 0, 7, 6, 4, 2, 7, 2, 8, 9, 6, 6, 5, 2, 4, 2, 5, 8, 4, 1, 6, 4, 1, 6, 0, 9, 6, 0, 2, 6, 2, 1, 7, 2, 0, 5, 9, 5, 2
Offset: 0

Views

Author

Jean-François Alcover, Aug 04 2014

Keywords

Examples

			0.4026975036714412909690453486510838034175567216249726592910534646...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.6 Otter's Tree Enumeration Constants, p. 297.

Crossrefs

Programs

  • Mathematica
    digits = 102; n0 = 50; dn = 50; Clear[rho]; rho[n_] := rho[n] = (Clear[c]; c[0] = 0; y[z_] = Sum[c[k]*z^k, {k, 0, n}]; eq[0] = Rest[ Thread[CoefficientList[(-2*z + 2*y[z] - y[z]^2 - y[z^2])/2, z] == 0]]; s[1] = First[Solve[First[eq[0]], c[1]]]; Do[eq[k-1] = Rest[eq[k-2]] /. s[k-1]; s[k] = First[Solve[First[eq[k-1]], c[k]]], {k, 2, n}]; z /. FindRoot[ 2*z + y[z^2] == 1 /. Flatten[Table[s[k], {k, 1, n}]], {z, 1/2}, WorkingPrecision -> digits+10]); rho[n0]; rho[n = n0 + dn]; While[RealDigits[rho[n], 10, digits] != RealDigits[rho[n - dn], 10, digits], Print["n = ", n]; n = n + dn]; RealDigits[rho[n], 10, digits] // First
    (* or, after A086317: *) Clear[c, xi]; c[0] = 2; c[n_] := c[n] = c[n-1]^2 + 2; xi[n_Integer] := xi[n] = c[n]^(2^-n); xi[5]; xi[n = 10]; While[RealDigits[xi[n], 10, digits] != RealDigits[xi[n-5], 10, digits], n = n+5]; RealDigits[1/xi[n], 10, digits] // First (* Jean-François Alcover, Aug 04 2014 *)

Formula