cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240946 Decimal expansion of the average distance traveled in three steps of length 1 for a random walk in the plane starting at the origin.

Original entry on oeis.org

1, 5, 7, 4, 5, 9, 7, 2, 3, 7, 5, 5, 1, 8, 9, 3, 6, 5, 7, 4, 9, 4, 6, 9, 2, 1, 8, 3, 0, 7, 6, 5, 1, 9, 6, 9, 0, 2, 2, 1, 6, 6, 6, 1, 8, 0, 7, 5, 8, 5, 1, 9, 1, 7, 0, 1, 9, 3, 6, 9, 3, 0, 9, 8, 3, 0, 1, 8, 3, 1, 1, 8, 0, 5, 9, 4, 4, 5, 4, 3, 8, 2, 1, 3, 1, 0, 8, 5, 3, 1, 3, 3, 6, 2, 2, 4, 1, 9, 5, 3
Offset: 1

Views

Author

Jean-François Alcover, Aug 04 2014

Keywords

Examples

			1.5745972375518936574946921830765...
		

Crossrefs

Cf. A088538 (two steps).

Programs

  • Mathematica
    (3*2^(1/3))/(16*Pi^4)*Gamma[1/3]^6 + (27*2^(2/3))/(4*Pi^4)*Gamma[2/3]^6 //
      RealDigits[#, 10, 100]& // First (* updated May 20 2015 *)

Formula

Integral_(0..3) x*p(x) dx, where p(x) = 2*sqrt(3)/Pi*x/(3+x^2) * 2F1(1/3, 2/3; 1; x^2*(9-x^2)^2/(3+x^2)^3), 2F1 being the hypergeometric function.
Re(3F2(-1/2, -1/2, 1/2; 1, 1; 4)).
(3*2^(1/3))/(16*Pi^4)*Gamma(1/3)^6 + (27*2^(2/3))/(4*Pi^4)*Gamma(2/3)^6.

Extensions

More digits from Jean-François Alcover, May 20 2015