A240953 Constant in Sathe's theorem: Product_{p prime} (1 - 1/p)*e^(1/p).
7, 2, 9, 2, 6, 4, 7, 4, 4, 2, 5, 7, 1, 1, 9, 0, 1, 8, 8, 5, 3, 6, 1, 5, 3, 1, 6, 9, 3, 1, 3, 0, 0, 1, 2, 8, 1, 7, 7, 5, 4, 5, 9, 7, 1, 0, 3, 7, 8, 4, 3, 6, 1, 8, 6, 7, 4, 7, 6, 6, 9, 1, 2, 8, 7, 6, 5, 5, 6, 4, 6, 6, 1, 2, 5, 6, 6, 7, 2, 2, 9, 4, 7, 4, 2, 8, 3, 5, 9, 1, 5, 6, 4, 2, 8, 0, 1, 6, 9, 7, 4, 7, 2
Offset: 0
Examples
0.72926474425711901885361531693130012817754597103784361867476691287655...
References
- L. G. Sathe, On a problem of Hardy on the distribution of integers having a given number of prime factors. I., J. Indian Math. Soc. (N.S.) 17 (1953), pp. 63-82.
- L. G. Sathe, On a problem of Hardy on the distribution of integers having a given number of prime factors. II., J. Indian Math. Soc. (N.S.) 17 (1953), pp. 83-141.
- Atle Selberg, Note on a paper by L. G. Sathe, J. Indian Math. Soc. (N.S.) 18 (1954), pp. 83-87.
Programs
-
Mathematica
digits = 103; S = E^-NSum[PrimeZetaP[ n]/n, {n, 2, Infinity}, WorkingPrecision -> digits + 10, NSumTerms -> 3*digits]; RealDigits[S, 10, digits] // First (* Jean-François Alcover, Sep 11 2015 *)
-
PARI
/* Helper functions and a function f to compute a k-th order approximation of the constant using the primes up to lim. */ eps(x=1.)=my(p=if(x,precision(x),default(realprecision))); precision(2. >> (32 * ceil(p * 38539962 / 371253907)), 9); primezeta(s)=my(lm=s*log(2));lm=lambertw(lm/eps())\lm;sum(k=1,lm,moebius(k)/k*log(abs(zeta(k*s)))); f(lim,k)=my(t=0.);forprime(p=2,lim,t+=log(1-1/p)+sum(i=1,k,1/i/p^i));exp(t-sum(i=2,k,primezeta(i)/i)); f(1e8, 9)
Extensions
More digits from Jean-François Alcover, Sep 11 2015
Comments