cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240953 Constant in Sathe's theorem: Product_{p prime} (1 - 1/p)*e^(1/p).

Original entry on oeis.org

7, 2, 9, 2, 6, 4, 7, 4, 4, 2, 5, 7, 1, 1, 9, 0, 1, 8, 8, 5, 3, 6, 1, 5, 3, 1, 6, 9, 3, 1, 3, 0, 0, 1, 2, 8, 1, 7, 7, 5, 4, 5, 9, 7, 1, 0, 3, 7, 8, 4, 3, 6, 1, 8, 6, 7, 4, 7, 6, 6, 9, 1, 2, 8, 7, 6, 5, 5, 6, 4, 6, 6, 1, 2, 5, 6, 6, 7, 2, 2, 9, 4, 7, 4, 2, 8, 3, 5, 9, 1, 5, 6, 4, 2, 8, 0, 1, 6, 9, 7, 4, 7, 2
Offset: 0

Views

Author

Keywords

Comments

Sathe proved that pi_k(x), the count of numbers <= x with exactly k prime factors, satisfies pi_k(x) ~ f(k/log log x) * x/log x * (log log x)^(k-1)/(k-1)! where f(x) = c/gamma(x+1) * Product_{p prime} 1 + x*exp(-x/p)/p and c is this constant. This holds uniformly for k < (2 - eps)log log x for any fixed eps > 0. - Charles R Greathouse IV, Aug 02 2016

Examples

			0.72926474425711901885361531693130012817754597103784361867476691287655...
		

References

  • L. G. Sathe, On a problem of Hardy on the distribution of integers having a given number of prime factors. I., J. Indian Math. Soc. (N.S.) 17 (1953), pp. 63-82.
  • L. G. Sathe, On a problem of Hardy on the distribution of integers having a given number of prime factors. II., J. Indian Math. Soc. (N.S.) 17 (1953), pp. 83-141.
  • Atle Selberg, Note on a paper by L. G. Sathe, J. Indian Math. Soc. (N.S.) 18 (1954), pp. 83-87.

Crossrefs

Programs

  • Mathematica
    digits = 103; S = E^-NSum[PrimeZetaP[ n]/n, {n, 2, Infinity}, WorkingPrecision -> digits + 10, NSumTerms -> 3*digits]; RealDigits[S, 10, digits] // First (* Jean-François Alcover, Sep 11 2015 *)
  • PARI
    /* Helper functions and a function f to compute a k-th order approximation of the constant using the primes up to lim. */
    eps(x=1.)=my(p=if(x,precision(x),default(realprecision))); precision(2. >> (32 * ceil(p * 38539962 / 371253907)), 9);
    primezeta(s)=my(lm=s*log(2));lm=lambertw(lm/eps())\lm;sum(k=1,lm,moebius(k)/k*log(abs(zeta(k*s))));
    f(lim,k)=my(t=0.);forprime(p=2,lim,t+=log(1-1/p)+sum(i=1,k,1/i/p^i));exp(t-sum(i=2,k,primezeta(i)/i));
    f(1e8, 9)

Formula

Equals e^A143524. - Jon Maiga, Nov 17 2018

Extensions

More digits from Jean-François Alcover, Sep 11 2015