This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A240956 #19 Aug 06 2014 06:02:24 %S A240956 1,2,9,72,830,12420,228060,4959360,124589304,3550050000,113116311000, %T A240956 3985174226880,153815533185600,6454433029524480,292557975636326400, %U A240956 14244829479956275200,741502151945703308160,41092028680670274827520,2415394879269218890243200 %N A240956 G.f.: Sum_{n>=0} n^n * x^n * (2 + n*x)^n / (1 + n*x)^(2*n+2). %H A240956 Vincenzo Librandi, <a href="/A240956/b240956.txt">Table of n, a(n) for n = 0..200</a> %F A240956 a(n) = Sum_{k=0..[n/2]} (n-k)! * Stirling2(n, n-k) * binomial(n-k, k) * 2^(n-2*k). %F A240956 a(n) ~ c * d^n * n! / sqrt(n), where d = 2*r^2/(2*r-1) + (2*r-1)*r/(2*(1-r)) = 3.36074272900128370245729732045120604190737486342012..., where r = 0.80276231206743119172295651485200150958072822575039811732... is the root of the equation (r + (1-2*r)^2/(4*(1-r))) * LambertW(-exp(-1/r)/r) = -1, and c = 0.533888836381702228067397487907088688592161798613354080016... . - _Vaclav Kotesovec_, Aug 05 2014 %e A240956 O.g.f.: A(x) = 1 + 2*x + 9*x^2 + 72*x^3 + 830*x^4 + 12420*x^5 + 228060*x^6 +... %e A240956 where %e A240956 A(x) = 1 + x*(2+x)/(1+x)^4 + 2^2*x^2*(2+2*x)^2/(1+2*x)^6 + 3^3*x^3*(2+3*x)^3/(1+3*x)^8 + 4^4*x^4*(2+4*x)^4/(1+4*x)^10 + 5^5*x^5*(2+5*x)^5/(1+5*x)^12 +... %t A240956 Table[Sum[(n-k)! * StirlingS2[n, n-k] * Binomial[n-k, k] * 2^(n-2*k), {k,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Aug 05 2014 *) %o A240956 (PARI) {a(n)=local(A=1); A=sum(m=0, n, m^m*x^m*(2+m*x)^m/(1 + m*x +x*O(x^n))^(2*m+2)); polcoeff(A, n)} %o A240956 for(n=0, 30, print1(a(n), ", ")) %o A240956 (PARI) /* From formula for a(n): */ %o A240956 {Stirling2(n, k)=sum(i=0, k, (-1)^i*binomial(k, i)*i^n)*(-1)^k/k!} %o A240956 {a(n)=sum(k=0, n\2, (n-k)!*Stirling2(n, n-k)*binomial(n-k, k)*2^(n-2*k) )} %o A240956 for(n=0, 30, print1(a(n), ", ")) %Y A240956 Cf. A240957, A240958. %K A240956 nonn %O A240956 0,2 %A A240956 _Paul D. Hanna_, Aug 04 2014