cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240964 Decimal expansion of Sum_{n>=1} n/sinh(n*Pi).

Original entry on oeis.org

0, 9, 4, 5, 7, 3, 0, 1, 9, 6, 6, 4, 7, 6, 1, 9, 3, 9, 5, 1, 3, 5, 8, 8, 9, 0, 0, 8, 5, 4, 4, 1, 3, 8, 4, 9, 3, 1, 4, 9, 5, 5, 3, 2, 9, 3, 1, 9, 2, 2, 4, 0, 1, 0, 4, 9, 7, 9, 5, 1, 5, 3, 1, 9, 5, 5, 5, 9, 2, 1, 0, 2, 7, 5, 4, 7, 6, 6, 3, 1, 1, 2, 8, 9, 7, 7, 4, 0, 1, 4, 8, 4, 9, 0, 9, 9, 6, 5, 1, 5, 2
Offset: 0

Views

Author

Jean-François Alcover, Aug 05 2014

Keywords

Comments

Prudnikov (p. 721, section 5.3.5, formula 1) has a typo, Gamma(1/4)^4 is correct, not Gamma(1/4)^2. - Vaclav Kotesovec, May 19 2022

Examples

			0.09457301966476193951358890085441384931495532931922401...
		

References

  • A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 1 (Overseas Publishers Association, Amsterdam, 1986).

Crossrefs

Programs

  • Mathematica
    Join[{0}, RealDigits[Gamma[1/4]^4/(32*Pi^3) - 1/(4*Pi), 10, 100] // First]
    N[EllipticK[k]/Pi^2*(EllipticK[k] - EllipticE[k]) /. k -> 1/2, 100] (* Vaclav Kotesovec, May 19 2022 *)
  • PARI
    suminf(k=1, k/sinh(k*Pi)) \\ Vaclav Kotesovec, May 19 2022
    
  • PARI
    suminf(k=1, 1/(2*sinh((k - 1/2)*Pi)^2)) \\ Vaclav Kotesovec, May 19 2022

Formula

Gamma(1/4)^4/(32*Pi^3) - 1/(4*Pi).