cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240965 Decimal expansion of integral_(0..1) K(1-x^2)^3 dx, where K is the complete elliptic integral of the first kind.

This page as a plain text file.
%I A240965 #11 Feb 16 2025 08:33:21
%S A240965 2,3,6,3,4,0,9,0,0,1,6,1,5,4,2,3,1,5,3,6,6,3,2,6,7,4,5,6,6,8,6,5,1,6,
%T A240965 4,1,7,4,8,4,1,3,9,5,1,5,8,8,6,1,3,9,3,2,8,8,5,2,9,0,5,2,6,8,0,3,8,1,
%U A240965 9,4,8,7,8,2,6,2,0,5,9,5,9,1,2,0,8,1,5,2,0,7,9,6,6,3,0,5,8,8,1,1,6,7,5,5,5
%N A240965 Decimal expansion of integral_(0..1) K(1-x^2)^3 dx, where K is the complete elliptic integral of the first kind.
%H A240965 M. Rogers, J. G. Wan, and I. J. Zucker, <a href="http://arxiv.org/abs/1303.2259">Moments of elliptic entegrals and critical L-values</a>.
%H A240965 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/CompleteEllipticIntegraloftheFirstKind.html">Complete Elliptic Integral of the First Kind</a>.
%F A240965 Gamma(1/4)^8/(128*Pi^2).
%e A240965 23.634090016154231536632674566865164174841395158861393288529...
%t A240965 (* NIntegrate[EllipticK[1 - x^2]^3, {x, 0, 1}] *)
%t A240965 RealDigits[Gamma[1/4]^8/(128*Pi^2), 10, 105] // First
%o A240965 (PARI) intnum(x=0,1,ellK(sqrt(1-x^2))^3) \\ _Charles R Greathouse IV_, Feb 05 2025
%o A240965 (PARI) gamma(1/4)^8/128/Pi^2 \\ _Charles R Greathouse IV_, Feb 05 2025
%Y A240965 Cf. A068466.
%K A240965 nonn,cons,easy
%O A240965 2,1
%A A240965 _Jean-François Alcover_, Aug 05 2014