cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240966 Decimal expansion of zeta'(-2) (the derivative of Riemann's zeta function at -2).

This page as a plain text file.
%I A240966 #16 Feb 16 2025 08:33:21
%S A240966 0,3,0,4,4,8,4,5,7,0,5,8,3,9,3,2,7,0,7,8,0,2,5,1,5,3,0,4,7,1,1,5,4,7,
%T A240966 7,6,6,4,7,0,0,0,4,8,3,5,4,4,9,7,3,9,3,6,2,5,2,9,7,1,8,8,9,8,5,9,0,3,
%U A240966 7,8,1,7,9,4,4,9,3,6,8,9,8,6,7,7,7,9,4,5,8,4,8,8,0,8,7,4,4,9,5,9,7,0,3,6
%N A240966 Decimal expansion of zeta'(-2) (the derivative of Riemann's zeta function at -2).
%H A240966 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/RiemannZetaFunction.html">Riemann Zeta Function</a>.
%F A240966 zeta'(-2) = -zeta(3)/(4*Pi^2).
%F A240966 Equals -log(A243262). - _Vaclav Kotesovec_, Feb 22 2015
%e A240966 -0.030448457058393270780251530471154776647000483544973936252971889859...
%t A240966 Join[{0}, RealDigits[-Zeta[3]/(4*Pi^2), 10, 103] // First]
%Y A240966 Cf. A084448 (zeta'(-1)), A075700 (zeta'(0)), A073002 (zeta'(2)), A244115 (zeta'(3)).
%K A240966 nonn,cons,easy
%O A240966 0,2
%A A240966 _Jean-François Alcover_, Aug 05 2014