A240979 Sum of unitary anti-divisors of n.
0, 0, 2, 3, 5, 0, 10, 8, 2, 10, 12, 5, 19, 12, 2, 14, 28, 12, 18, 16, 2, 32, 34, 7, 29, 20, 18, 38, 24, 0, 42, 58, 20, 26, 28, 0, 50, 66, 20, 39, 41, 22, 56, 32, 22, 54, 60, 24, 58, 56, 2, 86, 88, 0, 42, 40, 30, 92, 90, 35, 57, 74, 32, 46, 48, 26, 132, 104, 2
Offset: 1
Keywords
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..1000
Programs
-
Maple
P:=proc(q) local a,k,n,v; v:=[]; for n from 1 to q do a:=0; for k from 2 to n-1 do if abs((n mod k)-k/2)<1 then if gcd(n,k)=1 then a:=a+k; fi; fi; od; v:=[op(v),a]; od; print(op(v)); end: P(69); # corrected by Paolo P. Lava, Aug 17 2024
-
Mathematica
antiDivisors[n_Integer] := Cases[Range[2, n - 1], ?(Abs[Mod[n, #] - #/2] < 1 &)]; a240979[n_Integer] := Total[Select[antiDivisors[n], CoprimeQ[#, n] &]]; a240979 /@ Range[120] (* _Michael De Vlieger, Aug 17 2014 *)
Formula
Anti-divisors of 14 are 3, 4, 9. Anti-divisors coprime to 14 are 3 and 9 and therefore a(14) = 3 + 9 = 12.
Comments