This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A240980 #28 Jul 09 2017 04:20:54 %S A240980 0,1,1,1,0,0,1,1,-1,-1,15,15,-169,-169,10753,10753,-28713,-28713, %T A240980 1586789,1586789,-27542974,-13771487,4694573547,4694573547, %U A240980 -60230569205,-60230569205,7328718272473,7328718272473,-1043166080490099,-1043166080490099,343459524172314625,343459524172314625 %N A240980 Numerators of f(n) with 2*f(n+1) = f(n) + A198631(n)/A006519(n+1), f(0)=0. %C A240980 An autosequence is a sequence which has its inverse binomial transform equal to the signed sequence. (Examples: 1) A000045(n) is of the first kind. 2) 1/(n+1) is of the second kind). %C A240980 f(n), companion to A198631(n)/A006519(n+1), is an autosequence of the first kind. %C A240980 The difference table of f(n) is: %C A240980 0, 1/2, 1/2, 1/4, 0, 0, ... %C A240980 1/2, 0, -1/4, -1/4, 0, 1/4, ... %C A240980 -1/2, -1/4, 0, 1/4, 1/4, -3/8, ... %C A240980 1/4, 1/4, 1/4, 0, -5/8, -5/8, ... %C A240980 etc. %C A240980 The main diagonal is 0's=A000004. The first two upper diagonal are equal. %C A240980 a(n) are the numerators of f(n). %C A240980 f(n) is the first sequence of the family of alternated autosequences of the first and of the second kind %C A240980 0, 1/2, 1/2, 1/4, 0, 0, ... %C A240980 1, 1/2, 0, -1/4, 0, 1/2, ... = A198631(n)/A006519(n+1), %C A240980 0, -1/2, -1/2, 1/4, 1, -1/2, ... %C A240980 -1, -1/2, 1, 7/4, -2, -8, ... %C A240980 etc. %C A240980 Like A164555(n)/A027642(n), A198631(n)/A006519(n+1) is an autosequence which has its main diagonal equal to the first upper diagonal multiplied by 2. See A190339(n). %C A240980 The first column is 0 followed by A122045(n). %C A240980 For the numerators of the second column see A241209(n). %H A240980 Vincenzo Librandi, <a href="/A240980/b240980.txt">Table of n, a(n) for n = 0..300</a> %e A240980 2*f(1) = 0 + 1, f(1) = 1/2; %e A240980 2*f(2) = 1/2 + 1/2, f(2) = 1/2; %e A240980 2*f(3) = 1/2 + 0, f(3) = 1/4. %t A240980 Clear[f]; f[0] = 0; f[1] = 1/2; f[n_] := f[n] = (1/2)*(EulerE[n-1, 1]/2^IntegerExponent[n-1, 2] + f[n-1]); Table[f[n] // Numerator, {n, 0, 31}] (* _Jean-François Alcover_, Aug 06 2014 *) %Y A240980 Cf. A122045, A190339, A233808. %K A240980 sign,frac %O A240980 0,11 %A A240980 _Paul Curtz_, Aug 06 2014