A240982 Decimal expansion of the limit of a recursive sequence connected to the Plastic constant (A060006).
1, 8, 1, 6, 8, 8, 3, 4, 2, 4, 2, 4, 4, 7, 4, 0, 3, 1, 2, 4, 4, 8, 1, 8, 8, 2, 0, 2, 2, 2, 4, 8, 0, 7, 4, 5, 2, 9, 6, 5, 9, 2, 1, 7, 5, 7, 7, 5, 8, 7, 3, 4, 2, 3, 1, 5, 8, 1, 2, 5, 2, 9, 1, 6, 7, 0, 3, 9, 4, 7, 1, 7, 7, 1, 6, 0, 4, 1, 5, 3, 6, 7, 7, 5, 8, 0, 5, 7, 8, 6, 8, 7, 9, 6, 3, 9, 2, 3, 9
Offset: 1
Examples
1.8168834242447403124481882022248074529659217577587342315812529167...
References
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.2.2 Cubic Variations of the Golden Mean, p. 9.
Links
- Steven R. Finch, Errata and Addenda to Mathematical Constants
- Eric Weisstein's World of Mathematics, Plastic Constant
- Wikipedia, Plastic number
Crossrefs
Cf. A060006.
Programs
-
Mathematica
digits = 99; n0 = 10; dn = 10; psi0 = A060006 = Root[x^3 - x - 1, x, 1] // N[#, 3*digits]&; Clear[psi, limPsi]; psi[1] = 1; psi[n_] := psi[n] = (1 + psi[n - 1])^(1/3) // N[#, 3*digits]&; limPsi[n_] := limPsi[n] = (psi0 - psi[n])*(3*(1 + 1/psi0))^n; limPsi[n = n0]; limPsi[n = n0 + dn]; While[RealDigits[limPsi[n], 10, digits] != RealDigits[limPsi[n - dn], 10, digits], Print["n = ", n ]; n = n + dn];RealDigits[limPsi[n], 10, digits] // First
Formula
psi(1)=1, psi(n) = (1+psi(n-1))^(1/3),
lim_(n -> infinity) (psi0-psi(n))*(3*(1+1/psi0))^n, where psi0 = A060006 = the Plastic constant.