cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240982 Decimal expansion of the limit of a recursive sequence connected to the Plastic constant (A060006).

Original entry on oeis.org

1, 8, 1, 6, 8, 8, 3, 4, 2, 4, 2, 4, 4, 7, 4, 0, 3, 1, 2, 4, 4, 8, 1, 8, 8, 2, 0, 2, 2, 2, 4, 8, 0, 7, 4, 5, 2, 9, 6, 5, 9, 2, 1, 7, 5, 7, 7, 5, 8, 7, 3, 4, 2, 3, 1, 5, 8, 1, 2, 5, 2, 9, 1, 6, 7, 0, 3, 9, 4, 7, 1, 7, 7, 1, 6, 0, 4, 1, 5, 3, 6, 7, 7, 5, 8, 0, 5, 7, 8, 6, 8, 7, 9, 6, 3, 9, 2, 3, 9
Offset: 1

Views

Author

Jean-François Alcover, Aug 06 2014

Keywords

Examples

			1.8168834242447403124481882022248074529659217577587342315812529167...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.2.2 Cubic Variations of the Golden Mean, p. 9.

Crossrefs

Cf. A060006.

Programs

  • Mathematica
    digits = 99; n0 = 10; dn = 10; psi0 = A060006 = Root[x^3 - x - 1, x, 1] // N[#, 3*digits]&; Clear[psi, limPsi]; psi[1] = 1; psi[n_] := psi[n] = (1 + psi[n - 1])^(1/3) // N[#, 3*digits]&; limPsi[n_] := limPsi[n] = (psi0 - psi[n])*(3*(1 + 1/psi0))^n; limPsi[n = n0]; limPsi[n = n0 + dn]; While[RealDigits[limPsi[n], 10, digits] != RealDigits[limPsi[n - dn], 10, digits], Print["n = ", n ]; n = n + dn];RealDigits[limPsi[n], 10, digits] // First

Formula

psi(1)=1, psi(n) = (1+psi(n-1))^(1/3),
lim_(n -> infinity) (psi0-psi(n))*(3*(1+1/psi0))^n, where psi0 = A060006 = the Plastic constant.