A240988 Denominators of the (reduced) rationals (((n-1)!!)/(n!! * 2^((1 + (-1)^n)/2)))^((-1)^n), where n is a positive integer.
1, 4, 2, 16, 8, 32, 16, 256, 128, 512, 256, 2048, 1024, 4096, 2048, 65536, 32768, 131072, 65536, 524288, 262144, 1048576, 524288, 8388608, 4194304, 16777216, 8388608, 67108864, 33554432, 134217728, 67108864, 4294967296, 2147483648, 8589934592, 4294967296
Offset: 1
Examples
For n = 1, a(1) = 1. For n = 2, a(2) = 2 * 2 = 4. For n = 6, a(6) = 2 * 2 * 4 * 2 = 32.
Links
- James Burling, The Special Rational Sequence
Crossrefs
Cf. A163590 (numerators).
Programs
-
Maple
f:= n -> denom(((doublefactorial(n-1)) / (doublefactorial(n)*2^((1+(-1)^n)/2)))^((-1)^n)): seq(f(n), n=1..100); # Robert Israel, Aug 06 2014
-
PARI
df(n) = prod(i=0, floor((n-1)/2), n-2*i) \\ Double factorial (n!!) a(n) = denominator(((df(n-1)) / (df(n)*2^((1+(-1)^n)/2)))^((-1)^n)) vector(50, n, a(n)) \\ Colin Barker, Aug 06 2014
Formula
a(n) = denominator((((n-1)!!)/(n!! * 2^((1 + (-1)^n)/2)))^((-1)^n)).
a(n) = denominator(g(1, n)) where g(m, n) = m if m = n; m/(2 * g(m + 1, n)) otherwise.
Extensions
More terms from Colin Barker, Aug 06 2014
Comments