cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240988 Denominators of the (reduced) rationals (((n-1)!!)/(n!! * 2^((1 + (-1)^n)/2)))^((-1)^n), where n is a positive integer.

Original entry on oeis.org

1, 4, 2, 16, 8, 32, 16, 256, 128, 512, 256, 2048, 1024, 4096, 2048, 65536, 32768, 131072, 65536, 524288, 262144, 1048576, 524288, 8388608, 4194304, 16777216, 8388608, 67108864, 33554432, 134217728, 67108864, 4294967296, 2147483648, 8589934592, 4294967296
Offset: 1

Views

Author

James Burling, Aug 06 2014

Keywords

Comments

Numerators for this sequence are the swinging factorial A163590, starting from n = 1.
The terms are all powers of 2 (A000079).
It appears that a(2*n) = 2^A101925(n) and a(2*n+1) = 2^A005187(n). - Robert Israel, Aug 06 2014

Examples

			For n = 1, a(1) = 1.
For n = 2, a(2) = 2 * 2 = 4.
For n = 6, a(6) = 2 * 2 * 4 * 2 = 32.
		

Crossrefs

Cf. A163590 (numerators).

Programs

  • Maple
    f:= n -> denom(((doublefactorial(n-1)) / (doublefactorial(n)*2^((1+(-1)^n)/2)))^((-1)^n)):
    seq(f(n), n=1..100); # Robert Israel, Aug 06 2014
  • PARI
    df(n) = prod(i=0, floor((n-1)/2), n-2*i) \\ Double factorial (n!!)
    a(n) = denominator(((df(n-1)) / (df(n)*2^((1+(-1)^n)/2)))^((-1)^n))
    vector(50, n, a(n)) \\ Colin Barker, Aug 06 2014

Formula

a(n) = denominator((((n-1)!!)/(n!! * 2^((1 + (-1)^n)/2)))^((-1)^n)).
a(n) = denominator(g(1, n)) where g(m, n) = m if m = n; m/(2 * g(m + 1, n)) otherwise.

Extensions

More terms from Colin Barker, Aug 06 2014