This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A241009 #23 Jan 17 2020 05:28:19 %S A241009 1,7,7,1,0,1,1,9,6,0,9,5,6,0,9,3,9,4,2,8,7,3,9,8,0,2,3,3,5,3,6,0,5,2, %T A241009 9,0,8,0,1,6,6,5,0,3,9,4,5,6,8,7,2,0,8,6,1,0,2,2,8,7,0,9,0,5,2,9,5,5, %U A241009 9,1,1,1,1,9,4,7,4,4,5,7,9,0,6,2,0,1,6,5,2,5,1,5,4,2,4,6,4,0,2,1,2 %N A241009 Decimal expansion of Sierpiński's S^ (Ŝ or "S hat" as named by S. Finch), a constant appearing in the asymptotics of the number of representations of a positive integer as a sum of two squares. %D A241009 Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.10 Sierpinski's constant, p. 122. %H A241009 Steven R. Finch, <a href="http://arxiv.org/abs/2001.00578">Errata and Addenda to Mathematical Constants</a>, Section 2.10 p. 17. %F A241009 S_hat = gamma + S - 12/Pi^2*zeta'(2) + log(2)/3 - 1, where S = A086058 - 1 = A062089 / Pi. %e A241009 1.7710119609560939428739802335360529080166503945687208610228709... %t A241009 S = 2* EulerGamma + 2*Log[2 ] + 3*Log[Pi] - 4* Log[Gamma[1/4]]; (* S^ *) Sh = EulerGamma + S - 12/Pi^2 Zeta'[2] + Log[2]/3 - 1; RealDigits[Sh, 10, 101] // First %o A241009 (PARI) 3*Euler + 3*log(Pi) - 4*lngamma(1/4) - 12*zeta'(2)/Pi^2 + 7*log(2)/3 - 1 \\ _Charles R Greathouse IV_, Aug 08 2014 %Y A241009 Cf. A062089, A086058. %K A241009 nonn,cons %O A241009 1,2 %A A241009 _Jean-François Alcover_, Aug 07 2014