cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241013 Semiprimes congruent to {1, 2, 4} mod 5.

This page as a plain text file.
%I A241013 #13 Aug 09 2014 23:07:16
%S A241013 4,6,9,14,21,22,26,34,39,46,49,51,57,62,69,74,77,82,86,87,91,94,106,
%T A241013 111,119,121,122,129,134,141,142,146,159,161,166,169,177,187,194,201,
%U A241013 202,206,209,214,217,219,221,226,237,247,249,254,259,262,267,274,287,289
%N A241013 Semiprimes congruent to {1, 2, 4} mod 5.
%C A241013 Semiprimes in A032793.
%H A241013 K. D. Bajpai, <a href="/A241013/b241013.txt">Table of n, a(n) for n = 1..11280</a>
%e A241013 21 = 3 * 7 which is semiprime and 21 = 1 mod 5.
%e A241013 39 = 3 * 13 which is semiprime and 39 = 4 mod 5.
%t A241013 Select[Range[500], PrimeOmega[#] == 2 && MemberQ[{1, 2, 4}, Mod[#, 5]] &](* Bajpai *)
%t A241013 Select[Complement[Range[100], 5Range[20] - 2, 5Range[20]], PrimeOmega[#] == 2 &] (* _Alonso del Arte_, Aug 07 2014 *)
%o A241013 (PARI)
%o A241013 for(n=1,10^4,if(n!=Mod(0,5)&&n!=Mod(3,5),if(bigomega(n)==2,print1(n,", ")))) \\ _Derek Orr_, Aug 07 2014
%Y A241013 Cf. A001358, A032793, A045371.
%K A241013 nonn,easy
%O A241013 1,1
%A A241013 _K. D. Bajpai_, Aug 07 2014