This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A241018 #32 May 11 2025 18:53:44 %S A241018 1,1,1,5,1,7,1,0,2,6,3,3,11,2,14,4,0,4,6,0,4,20,6,7,18,1,1,23,8,8,23, %T A241018 7,0,0,0,26,33,0,11,8,5,8,13,12,44,2,2,0,11,31,17,39,1,51,5,7,4,29,9, %U A241018 16,0,0,26,14,26,10,13,0,0,34,40,0,15,3,14,32,0 %N A241018 a(n) is the smallest j such that the n-digit number consisting of a 1 in position j and 9's in the other n-1 positions is a prime, or 0 if no such prime exists. %C A241018 Previous name: Let x(1)x(2)...x(n) denote the decimal expansion of a number p having an index j such that x(j) = 1 and x(i) = 9 for i <> j. a(n) is the smallest index j such that p is prime, or 0 if no such prime exists. %C A241018 Except 0, the corresponding primes are 19, 199, 1999, 99991, 199999, 9999991, 19999999, 0, 9199999999, 99999199999, 991999999999, 9919999999999, ... . %H A241018 Robert Israel, <a href="/A241018/b241018.txt">Table of n, a(n) for n = 2..4033</a> %p A241018 with(numtheory):nn:=80:T:=array(1..nn): %p A241018 for n from 2 to nn do: %p A241018 for i from 1 to n do: %p A241018 T[i]:=9: %p A241018 od: %p A241018 ii:=0: %p A241018 for j from 1 to n while(ii=0)do: %p A241018 T[j]:=1:s:=sum('T[i]*10^(n-i)', 'i'=1..n): %p A241018 if type(s,prime)=true %p A241018 then %p A241018 ii:=1: printf(`%d, `,j): %p A241018 else %p A241018 T[j]:=9: %p A241018 fi: %p A241018 od: %p A241018 if ii=0 %p A241018 then %p A241018 printf(`%d, `,0): %p A241018 else %p A241018 fi: %p A241018 od: %t A241018 Table[With[{w = ConstantArray[9, n]}, SelectFirst[Range@ n, PrimeQ@ FromDigits@ ReplacePart[w, # -> 1] &]] /. m_ /; MissingQ@ m -> 0, {n, 2, 78}] (* _Michael De Vlieger_, Sep 13 2017 *) %o A241018 (Python) %o A241018 from sympy import isprime %o A241018 def a(n): %o A241018 base = (10**n-1) %o A241018 for j in range(1, n+1): %o A241018 t = base - 8*10**(n-j) %o A241018 if isprime(t): %o A241018 return j %o A241018 return 0 %o A241018 print([a(n) for n in range(2, 78)]) # _Michael S. Branicky_, Jun 02 2024 %Y A241018 Cf. A241019, A241020. %K A241018 nonn,base %O A241018 2,4 %A A241018 _Michel Lagneau_, Apr 15 2014 %E A241018 Name simplified by _Jon E. Schoenfield_, Sep 13 2017