cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241035 Number of partitions p of n into distinct parts such that max(p) = 2*min(p).

This page as a plain text file.
%I A241035 #11 Jan 05 2019 04:36:58
%S A241035 0,0,0,1,0,0,1,0,0,2,0,0,1,1,1,1,0,1,3,1,0,2,1,2,3,2,1,2,2,3,5,2,2,4,
%T A241035 3,3,5,5,5,6,3,4,7,6,7,9,7,6,9,8,8,10,10,12,14,11,11,13,13,14,17,16,
%U A241035 17,21,18,19,22,20,21,25,25
%N A241035 Number of partitions p of n into distinct parts such that max(p) = 2*min(p).
%e A241035 a(9) counts these 2 partitions:  {6,3}, {4,3,2}.
%t A241035 z = 70; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &];
%t A241035 Table[Count[f[n], p_ /; Max[p] < 2*Min[p]], {n, 0, z}]  (* A240874 *)
%t A241035 Table[Count[f[n], p_ /; Max[p] == 2*Min[p]], {n, 0, z}] (* A241035 *)
%t A241035 Table[Count[f[n], p_ /; Max[p] >= 2*Min[p]], {n, 0, z}] (* A241036 *)
%t A241035 Table[Count[f[n], p_ /; Max[p] > 2*Min[p]], {n, 0, z}]  (* A241037 *)
%Y A241035 Cf. A240874, A241036, A241037.
%K A241035 nonn,easy
%O A241035 0,10
%A A241035 _Clark Kimberling_, Apr 15 2014