cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241036 Number of partitions p of n into distinct parts such that max(p) >= 2*min(p).

This page as a plain text file.
%I A241036 #8 Jan 05 2019 04:37:11
%S A241036 0,0,0,1,1,1,3,3,4,6,8,9,12,15,19,23,28,33,42,49,58,70,82,97,115,134,
%T A241036 156,182,212,245,285,328,376,434,497,568,651,742,845,962,1090,1236,
%U A241036 1401,1584,1788,2019,2273,2556,2875,3227,3618,4055,4538,5074,5670,6327
%N A241036 Number of partitions p of n into distinct parts such that max(p) >= 2*min(p).
%e A241036 a(11) counts these 9 partitions:  {10,1}, {9,2}, {8,3}, {8,2,1}, {7,3,1}, {6,4,1}, {6,3,2}, {5,4,2}, {5,3,2,1}.
%t A241036 z = 70; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &];
%t A241036 Table[Count[f[n], p_ /; Max[p] < 2*Min[p]], {n, 0, z}]  (* A240874 *)
%t A241036 Table[Count[f[n], p_ /; Max[p] == 2*Min[p]], {n, 0, z}] (* A241035 *)
%t A241036 Table[Count[f[n], p_ /; Max[p] >= 2*Min[p]], {n, 0, z}] (* A241036 *)
%t A241036 Table[Count[f[n], p_ /; Max[p] > 2*Min[p]], {n, 0, z}]  (* A241037 *)
%Y A241036 Cf. A240874, A241035, A241037.
%K A241036 nonn,easy
%O A241036 0,7
%A A241036 _Clark Kimberling_, Apr 15 2014