cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241037 Number of partitions p of n into distinct parts such that max(p) > 2*min(p).

This page as a plain text file.
%I A241037 #9 Jan 05 2019 04:37:05
%S A241037 0,0,0,0,1,1,2,3,4,4,8,9,11,14,18,22,28,32,39,48,58,68,81,95,112,132,
%T A241037 155,180,210,242,280,326,374,430,494,565,646,737,840,956,1087,1232,
%U A241037 1394,1578,1781,2010,2266,2550,2866,3219,3610,4045,4528,5062,5656,6316
%N A241037 Number of partitions p of n into distinct parts such that max(p) > 2*min(p).
%e A241037 a(9) counts these 4 partitions:  {8,1}, {7,2}, {6,2,1}, {5,3,1}.
%t A241037 z = 70; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &];
%t A241037 Table[Count[f[n], p_ /; Max[p] < 2*Min[p]], {n, 0, z}]  (* A240874 *)
%t A241037 Table[Count[f[n], p_ /; Max[p] == 2*Min[p]], {n, 0, z}] (* A241035 *)
%t A241037 Table[Count[f[n], p_ /; Max[p] >= 2*Min[p]], {n, 0, z}] (* A241036 *)
%t A241037 Table[Count[f[n], p_ /; Max[p] > 2*Min[p]], {n, 0, z}]  (* A241037 *)
%Y A241037 Cf. A240874, A241035, A241036.
%K A241037 nonn,easy
%O A241037 0,7
%A A241037 _Clark Kimberling_, Apr 15 2014