cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A241050 Number of n X 2 0..3 arrays with no element equal to one plus the sum of elements to its left or zero plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

3, 3, 4, 6, 8, 12, 13, 20, 28, 38, 53, 68, 96, 130, 178, 245, 330, 454, 617, 841, 1153, 1563, 2144, 2913, 3982, 5431, 7404, 10111, 13783, 18809, 25665, 34995, 47772, 65135, 88894, 121250, 165416, 225685, 307854, 420020, 572988, 781677, 1066446, 1454794
Offset: 1

Views

Author

R. H. Hardin, Apr 15 2014

Keywords

Examples

			All solutions for n=4:
..3..2....3..3....3..3....3..2....3..2....3..2
..2..0....2..0....2..2....2..0....2..0....2..0
..3..3....2..0....2..0....3..3....2..0....3..3
..3..2....2..0....2..0....2..2....2..0....2..0
		

Crossrefs

Column 2 of A241054.

Formula

Empirical: a(n) = 2*a(n-2) - a(n-4) + a(n-5) - a(n-7) + a(n-8) + a(n-11) for n>15.
Empirical g.f.: x*(3 + 3*x - 2*x^2 + 3*x^4 - 2*x^6 + x^7 + 4*x^8 + 3*x^9 - 2*x^11 - x^12 + x^13 + 2*x^14) / ((1 + x)*(1 - x - x^2 + x^3 - x^5 + x^6 - x^8 + x^9 - x^10)). - Colin Barker, Oct 29 2018

A241051 Number of nX3 0..3 arrays with no element equal to one plus the sum of elements to its left or zero plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

4, 2, 3, 6, 6, 15, 31, 58, 170, 388, 677, 1821, 3533, 7379, 18106, 37073, 82436, 193696, 400749, 914323, 2049019, 4372160, 9966006, 21985585, 47864157, 108257464, 237088178, 522824937, 1171545248, 2567836513, 5698120668, 12680572718
Offset: 1

Views

Author

R. H. Hardin, Apr 15 2014

Keywords

Comments

Column 3 of A241054

Examples

			All solutions for n=4
..3..3..2....3..3..2....3..3..2....3..3..2....3..3..2....3..3..2
..2..2..0....2..2..0....2..2..0....2..2..0....2..0..0....2..2..0
..3..3..0....3..3..0....2..0..0....3..3..0....2..0..0....3..3..0
..3..2..0....2..2..3....2..0..0....2..2..0....2..0..0....3..2..3
		

A241052 Number of nX4 0..3 arrays with no element equal to one plus the sum of elements to its left or zero plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

7, 10, 24, 64, 132, 690, 2142, 7144, 30662, 95669, 356203, 1295102, 4422715, 16996927, 58368376, 210047376, 778300845, 2685487991, 9897567452, 35427665822, 125536795397, 459821814155, 1627346610378, 5869761114047, 21203315127283
Offset: 1

Views

Author

R. H. Hardin, Apr 15 2014

Keywords

Comments

Column 4 of A241054

Examples

			Some solutions for n=4
..3..2..3..2....3..3..2..2....3..3..2..2....3..3..2..3....3..3..2..2
..2..1..1..0....2..1..1..3....2..1..1..3....2..1..1..0....2..1..1..0
..3..1..2..0....2..1..1..3....3..3..1..3....3..3..2..2....3..3..2..3
..3..2..0..0....2..0..1..3....2..2..3..3....2..0..2..3....2..1..3..0
		

A241053 Number of n X 5 0..3 arrays with no element equal to one plus the sum of elements to its left or zero plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

10, 18, 60, 163, 598, 3411, 11283, 72578, 404421, 2220973, 15323311, 89098530, 555805615, 3439171493, 20036872248, 122952210402, 718794479207, 4313956945052, 26242676909613, 154481099979249, 936900491409907
Offset: 1

Views

Author

R. H. Hardin, Apr 15 2014

Keywords

Examples

			Some solutions for n=4:
..3..3..2..3..3....3..2..3..3..3....3..2..3..3..3....3..3..2..3..2
..2..0..1..1..0....2..1..1..2..2....2..1..1..2..2....2..1..1..0..0
..2..0..0..2..2....2..0..1..2..0....2..0..1..2..0....3..3..2..2..0
..2..0..1..1..3....2..1..3..2..0....2..0..0..2..2....3..2..0..0..3
		

Crossrefs

Column 5 of A241054.

A241055 Number of 2 X n 0..3 arrays with no element equal to one plus the sum of elements to its left or zero plus the sum of the elements above it or zero plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

2, 3, 2, 10, 18, 18, 46, 58, 102, 173, 264, 487, 738, 1318, 2151, 3591, 6192, 10096, 17480, 28925, 49131, 82966, 138977, 236535, 395979, 671706, 1131018, 1908201, 3226558, 5432423, 9189152, 15486612, 26156656, 44151446, 74485403, 125808822
Offset: 1

Views

Author

R. H. Hardin, Apr 15 2014

Keywords

Examples

			Some solutions for n=4:
..3..3..2..2....3..3..2..2....3..2..3..3....3..2..3..3....3..3..2..2
..2..1..1..3....2..2..0..0....2..1..1..0....2..1..1..2....2..2..0..3
		

Crossrefs

Row 2 of A241054.

Formula

Empirical: a(n) = 3*a(n-2) + 3*a(n-3) - 3*a(n-4) - 4*a(n-5) - 2*a(n-6) + 3*a(n-7) - a(n-9) + 2*a(n-11) - 2*a(n-12) + 2*a(n-15) for n>17.
Empirical g.f.: x*(2 + 3*x - 4*x^2 - 5*x^3 + 9*x^4 - x^5 - 16*x^6 - 12*x^7 - x^8 + 3*x^9 + 3*x^10 + 11*x^12 - 10*x^13 - 8*x^14 + 6*x^15 + 8*x^16) / ((1 - x)*(1 + x - 2*x^2 - 5*x^3 - 2*x^4 + 2*x^5 + 4*x^6 + x^7 + x^8 + 2*x^9 + 2*x^10 + 2*x^12 + 2*x^13 + 2*x^14)). - Colin Barker, Oct 29 2018

A241056 Number of 3Xn 0..3 arrays with no element equal to one plus the sum of elements to its left or zero plus the sum of the elements above it or zero plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

4, 4, 3, 24, 60, 93, 297, 507, 1264, 2850, 6180, 15453, 33463, 81394, 185671, 428769, 1005669, 2301449, 5384371, 12403537, 28828484, 66828140, 154614938, 359224400, 831157978, 1928175521, 4468984943, 10355201708, 24011010277, 55638167866
Offset: 1

Views

Author

R. H. Hardin, Apr 15 2014

Keywords

Comments

Row 3 of A241054

Examples

			Some solutions for n=4
..3..3..2..2....3..3..2..3....3..2..3..2....3..2..3..3....3..2..3..2
..2..1..1..0....2..1..1..0....2..1..1..0....2..1..1..2....2..1..1..0
..2..1..2..3....3..3..2..2....2..1..3..0....2..0..1..2....2..1..2..0
		

Formula

Empirical: a(n) = 9*a(n-2) +12*a(n-3) -36*a(n-4) -94*a(n-5) +42*a(n-6) +366*a(n-7) +182*a(n-8) -847*a(n-9) -1102*a(n-10) +1053*a(n-11) +3109*a(n-12) +196*a(n-13) -5605*a(n-14) -4198*a(n-15) +6248*a(n-16) +11838*a(n-17) -1164*a(n-18) -20204*a(n-19) -9948*a(n-20) +22399*a(n-21) +20007*a(n-22) -15440*a(n-23) -32138*a(n-24) -3232*a(n-25) +46610*a(n-26) +38214*a(n-27) -37132*a(n-28) -43172*a(n-29) +14617*a(n-30) +32371*a(n-31) +36897*a(n-32) +8088*a(n-33) -123047*a(n-34) -63621*a(n-35) +134896*a(n-36) +125072*a(n-37) -107223*a(n-38) -179919*a(n-39) +66957*a(n-40) +285064*a(n-41) -143540*a(n-42) -368756*a(n-43) +184926*a(n-44) +309921*a(n-45) -290298*a(n-46) -125601*a(n-47) +305292*a(n-48) +136259*a(n-49) -258603*a(n-50) +61327*a(n-51) +159050*a(n-52) -38560*a(n-53) -141448*a(n-54) +129709*a(n-55) +7719*a(n-56) -44123*a(n-57) -7193*a(n-58) +55990*a(n-59) -13845*a(n-60) -8760*a(n-61) +20576*a(n-62) -2742*a(n-63) -2230*a(n-64) -2120*a(n-65) -936*a(n-66) -3164*a(n-67) -680*a(n-68) -848*a(n-70) for n>85

A241057 Number of 4Xn 0..3 arrays with no element equal to one plus the sum of elements to its left or zero plus the sum of the elements above it or zero plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

6, 6, 6, 64, 163, 280, 1423, 4167, 13389, 46605, 146031, 518568, 1559943, 5448063, 18661041, 57879161, 201222626, 664132824, 2176050370, 7339658200, 24139869513, 80786317859, 267972379590, 888853920796, 2971967179489, 9838548423147
Offset: 1

Views

Author

R. H. Hardin, Apr 15 2014

Keywords

Comments

Row 4 of A241054

Examples

			Some solutions for n=4
..3..3..2..2....3..2..3..3....3..3..2..2....3..3..2..2....3..3..2..3
..2..1..1..0....2..1..1..0....2..1..1..3....2..1..1..3....2..1..1..0
..3..3..2..3....2..0..2..0....2..1..1..2....3..3..1..2....3..3..2..2
..2..2..2..0....2..1..3..0....2..0..2..0....2..0..2..0....2..2..0..0
		

A241058 Number of 5Xn 0..3 arrays with no element equal to one plus the sum of elements to its left or zero plus the sum of the elements above it or zero plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

8, 8, 6, 132, 598, 1392, 10921, 72769, 370453, 1671155, 9384164, 51783699, 208252518, 1150802650, 6121081737, 27887287923, 140605229939, 756558481056, 3755762723973, 18153596088044, 90862001756655, 469665600883273
Offset: 1

Views

Author

R. H. Hardin, Apr 15 2014

Keywords

Comments

Row 5 of A241054

Examples

			Some solutions for n=4
..3..2..3..3....3..2..3..3....3..3..2..3....3..3..2..3....3..3..2..2
..2..1..1..0....2..1..1..0....2..1..1..0....2..1..1..0....2..1..1..3
..2..0..2..2....2..0..2..0....3..3..2..2....3..3..2..2....2..1..1..2
..2..1..1..0....2..1..3..0....3..1..2..0....3..2..0..0....2..0..2..2
..2..1..2..0....3..1..0..2....2..2..2..0....2..2..3..3....3..3..1..3
		
Showing 1-8 of 8 results.