A241056 Number of 3Xn 0..3 arrays with no element equal to one plus the sum of elements to its left or zero plus the sum of the elements above it or zero plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4.
4, 4, 3, 24, 60, 93, 297, 507, 1264, 2850, 6180, 15453, 33463, 81394, 185671, 428769, 1005669, 2301449, 5384371, 12403537, 28828484, 66828140, 154614938, 359224400, 831157978, 1928175521, 4468984943, 10355201708, 24011010277, 55638167866
Offset: 1
Keywords
Examples
Some solutions for n=4 ..3..3..2..2....3..3..2..3....3..2..3..2....3..2..3..3....3..2..3..2 ..2..1..1..0....2..1..1..0....2..1..1..0....2..1..1..2....2..1..1..0 ..2..1..2..3....3..3..2..2....2..1..3..0....2..0..1..2....2..1..2..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..201
Formula
Empirical: a(n) = 9*a(n-2) +12*a(n-3) -36*a(n-4) -94*a(n-5) +42*a(n-6) +366*a(n-7) +182*a(n-8) -847*a(n-9) -1102*a(n-10) +1053*a(n-11) +3109*a(n-12) +196*a(n-13) -5605*a(n-14) -4198*a(n-15) +6248*a(n-16) +11838*a(n-17) -1164*a(n-18) -20204*a(n-19) -9948*a(n-20) +22399*a(n-21) +20007*a(n-22) -15440*a(n-23) -32138*a(n-24) -3232*a(n-25) +46610*a(n-26) +38214*a(n-27) -37132*a(n-28) -43172*a(n-29) +14617*a(n-30) +32371*a(n-31) +36897*a(n-32) +8088*a(n-33) -123047*a(n-34) -63621*a(n-35) +134896*a(n-36) +125072*a(n-37) -107223*a(n-38) -179919*a(n-39) +66957*a(n-40) +285064*a(n-41) -143540*a(n-42) -368756*a(n-43) +184926*a(n-44) +309921*a(n-45) -290298*a(n-46) -125601*a(n-47) +305292*a(n-48) +136259*a(n-49) -258603*a(n-50) +61327*a(n-51) +159050*a(n-52) -38560*a(n-53) -141448*a(n-54) +129709*a(n-55) +7719*a(n-56) -44123*a(n-57) -7193*a(n-58) +55990*a(n-59) -13845*a(n-60) -8760*a(n-61) +20576*a(n-62) -2742*a(n-63) -2230*a(n-64) -2120*a(n-65) -936*a(n-66) -3164*a(n-67) -680*a(n-68) -848*a(n-70) for n>85
Comments