This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A241061 #13 Nov 09 2024 02:29:05 %S A241061 0,1,1,2,1,2,2,2,2,4,2,3,4,4,4,5,4,6,7,6,6,8,8,9,10,10,10,12,12,14,16, %T A241061 14,16,18,18,20,22,23,24,26,26,28,32,32,35,38,38,40,44,45,48,52,54,58, %U A241061 62,62,66,71,74,78,84,86,92,98,100,106,112,116,122 %N A241061 Number of partitions p of n into distinct parts such that max(p) < 1 + 2*min(p). %F A241061 a(n) + A241062(n) + A241064(n) = A000009(n) for n >= 1. %F A241061 a(n) = A207642(n) - A241062(n) for n >= 0. %e A241061 a(10) counts these 2 partitions: {10}, {6,4}. %t A241061 z = 70; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &]; %t A241061 Table[Count[f[n], p_ /; Max[p] < 1 + 2*Min[p]], {n, 0, z}] (* A241061 *) %t A241061 Table[Count[f[n], p_ /; Max[p] <= 1 + 2*Min[p]], {n, 0, z}](* A207642 *) %t A241061 Table[Count[f[n], p_ /; Max[p] == 1 + 2*Min[p]], {n, 0, z}](* A241062 *) %t A241061 Table[Count[f[n], p_ /; Max[p] >= 1 + 2*Min[p]], {n, 0, z}](* A241037 *) %t A241061 Table[Count[f[n], p_ /; Max[p] > 1 + 2*Min[p]], {n, 0, z}] (* A241064 *) %Y A241061 Cf. A207642, A241062, A241037, A241064, A000009. %K A241061 nonn,easy %O A241061 0,4 %A A241061 _Clark Kimberling_, Apr 16 2014