cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241063 Number of partitions p of n into distinct parts such that max(p) = 3*min(p).

This page as a plain text file.
%I A241063 #7 Apr 24 2014 10:28:06
%S A241063 0,0,0,0,1,0,1,0,1,0,0,1,2,1,0,1,3,2,1,1,3,2,2,3,4,3,3,5,4,5,5,7,7,7,
%T A241063 7,7,9,10,10,11,13,14,14,14,15,17,19,22,24,23,24,28,28,31,32,36,39,42,
%U A241063 43,46,49,53,56,59,65,68,73,77,81,87,92
%N A241063 Number of partitions p of n into distinct parts such that max(p) = 3*min(p).
%e A241063 a(12) counts these 2 partitions:  93, 642.
%t A241063 z = 40; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &];
%t A241063     Table[Count[f[n], p_ /; Max[p] == 2*Min[p]], {n, 0, z}] (* A241035 *)
%t A241063     Table[Count[f[n], p_ /; Max[p] == 3*Min[p]], {n, 0, z}] (* A241063 *)
%t A241063     Table[Count[f[n], p_ /; Max[p] == 4*Min[p]], {n, 0, z}] (* A241069 *)
%t A241063     Table[Count[f[n], p_ /; Max[p] == 5*Min[p]], {n, 0, z}] (* A241272 *)
%t A241063     Table[Count[f[n], p_ /; Max[p] == 6*Min[p]], {n, 0, z}] (* A241273 *)
%Y A241063 Cf. A241035, A241069, A241272, A241273.
%K A241063 nonn,easy
%O A241063 0,13
%A A241063 _Clark Kimberling_, Apr 18 2014