cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241065 Number of partitions p of n into distinct parts such that max(p) < -1 + 2*min(p).

This page as a plain text file.
%I A241065 #6 Apr 24 2014 10:28:21
%S A241065 0,0,1,1,1,1,1,2,1,2,2,2,2,3,2,4,3,3,4,5,4,5,5,6,6,7,7,8,8,8,10,11,10,
%T A241065 12,12,13,14,15,16,17,19,18,20,22,22,25,26,27,29,30,32,34,36,37,41,43,
%U A241065 44,47,50,51,55,58,60,65,68,70,75,78,82,85,91
%N A241065 Number of partitions p of n into distinct parts such that max(p) < -1 + 2*min(p).
%e A241065 a(17) counts these 3 partitions:  {17}, {10, 7}, {9,8}.
%t A241065 z = 70; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &];
%t A241065 Table[Count[f[n], p_ /; Max[p] < -1 + 2*Min[p]], {n, 0, z}]  (* A241065 *)
%t A241065 Table[Count[f[n], p_ /; Max[p] <= -1 + 2*Min[p]], {n, 0, z}] (* A240874 *)
%t A241065 Table[Count[f[n], p_ /; Max[p] == -1 + 2*Min[p]], {n, 0, z}] (* A241067 *)
%t A241065 Table[Count[f[n], p_ /; Max[p] >= -1 + 2*Min[p]], {n, 0, z}] (* A241068 *)
%t A241065 Table[Count[f[n], p_ /; Max[p] > -1 + 2*Min[p]], {n, 0, z}]  (* A241036 *)
%Y A241065 Cf. A240874, A241067, A241068, A241036.
%K A241065 nonn,easy
%O A241065 0,8
%A A241065 _Clark Kimberling_, Apr 16 2014