A241066 Array t(n,k) = k^(2n)*(k^(2n)-1)*BernoulliB(2n)/(2n), n>=1, k>=2, absolute values read by ascending antidiagonals.
1, 2, 6, 16, 54, 20, 272, 2106, 544, 50, 7936, 179334, 66560, 3250, 105, 353792, 26414586, 17895424, 968750, 13986, 196, 22368256, 5957217414, 8329625600, 635781250, 8637840, 48020, 336, 1903757312, 1906398972666, 5937093935104, 722480468750, 11754617616, 54925276, 139776, 540
Offset: 1
Examples
Array begins: 1, 6, 20, 50, 105, ... 2, 54, 544, 3250, 13986, ... 16, 2106, 66560, 968750, 8637840, ... 272, 179334, 17895424, 635781250, 11754617616, ... 7936, 26414586, 8329625600, 722480468750, 27698169542400, ... etc.
Links
- MathWorld, Bernoulli Number
- Wikipedia, Bernoulli number
Programs
-
Mathematica
nmax = 8; t[n_, k_] := k^(2*n)*(k^(2*n)-1)*BernoulliB[2*n]/(2*n); Table[t[n-k+2, k] // Abs, {n, 1, nmax}, {k, 2, n+1}] // Flatten
Comments