cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241067 Number of partitions p of n into distinct parts such that max(p) = -1 + 2*min(p).

This page as a plain text file.
%I A241067 #5 Apr 24 2014 10:28:30
%S A241067 0,1,0,0,0,1,0,0,1,0,0,1,1,0,1,0,1,2,0,0,2,1,2,1,1,1,2,2,2,3,1,1,4,2,
%T A241067 3,4,3,3,3,3,4,6,5,4,6,4,5,7,6,7,8,8,8,9,7,8,11,11,11,13,12,12,15,12,
%U A241067 14,17,15,18,19,20,20
%N A241067 Number of partitions p of n into distinct parts such that max(p) = -1 + 2*min(p).
%e A241067 a(17) counts these 2 partitions:  {11,6}, {7,6,4}.
%t A241067 z = 70; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &];
%t A241067 Table[Count[f[n], p_ /; Max[p] < -1 + 2*Min[p]], {n, 0, z}]  (* A241065 *)
%t A241067 Table[Count[f[n], p_ /; Max[p] <= -1 + 2*Min[p]], {n, 0, z}] (* A240874 *)
%t A241067 Table[Count[f[n], p_ /; Max[p] == -1 + 2*Min[p]], {n, 0, z}] (* A241067 *)
%t A241067 Table[Count[f[n], p_ /; Max[p] >= -1 + 2*Min[p]], {n, 0, z}] (* A241068 *)
%t A241067 Table[Count[f[n], p_ /; Max[p] > -1 + 2*Min[p]], {n, 0, z}]  (* A241036 *)
%Y A241067 Cf. A241065, A240874, A241068, A241036.
%K A241067 nonn,easy
%O A241067 0,18
%A A241067 _Clark Kimberling_, Apr 16 2014