cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241084 Sum of the second largest parts of the partitions of 4n into 4 parts.

This page as a plain text file.
%I A241084 #41 Aug 17 2024 16:37:49
%S A241084 1,10,46,141,334,680,1247,2106,3348,5077,7396,10432,14325,19210,25250,
%T A241084 32621,41490,52056,64531,79114,96040,115557,137896,163328,192137,
%U A241084 224586,260982,301645,346870,397000,452391,513370,580316,653621,733644,820800,915517,1018186,1129258,1249197
%N A241084 Sum of the second largest parts of the partitions of 4n into 4 parts.
%H A241084 A. Osorio, <a href="http://mpra.ub.uni-muenchen.de/56690/1/MPRA_paper_56690.pdf">A Sequential Allocation Problem: The Asymptotic Distribution of Resources</a>, Munich Personal RePEc Archive, 2014.
%H A241084 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%H A241084 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,3,-6,6,-3,3,-3,1).
%F A241084 G.f.: -x*(5*x^6+17*x^5+25*x^4+30*x^3+19*x^2+7*x+1) / ((x-1)^5*(x^2+x+1)^2). - _Colin Barker_, Apr 16 2014
%F A241084 Recurrence: Let b(1) = 4, with b(n) = (n/(n-1)) * b(n-1) + 4n*Sum_{i=0..2n} (floor((4n-2-i)/2)-i) * (floor((sign((floor((4n-2-i)/2)-i))+2)/2)) for n>1. Then a(1) = 1, with a(n) = a(n-1) + b(n-1)/(4n-4) + Sum_{j=0..2n} (Sum_{i=j+1..floor((4n-2-j)/2)} i * (floor((sign((floor((4n-2-j)/2)-j))+ 2)/2)) ), for n>1. - _Wesley Ivan Hurt_, Jun 27 2014
%e A241084 For a(n) add the numbers in the second columns.
%e A241084                                              13 + 1 + 1 + 1
%e A241084                                              12 + 2 + 1 + 1
%e A241084                                              11 + 3 + 1 + 1
%e A241084                                              10 + 4 + 1 + 1
%e A241084                                               9 + 5 + 1 + 1
%e A241084                                               8 + 6 + 1 + 1
%e A241084                                               7 + 7 + 1 + 1
%e A241084                                              11 + 2 + 2 + 1
%e A241084                                              10 + 3 + 2 + 1
%e A241084                                               9 + 4 + 2 + 1
%e A241084                                               8 + 5 + 2 + 1
%e A241084                                               7 + 6 + 2 + 1
%e A241084                                               9 + 3 + 3 + 1
%e A241084                                               8 + 4 + 3 + 1
%e A241084                                               7 + 5 + 3 + 1
%e A241084                                               6 + 6 + 3 + 1
%e A241084                                               7 + 4 + 4 + 1
%e A241084                                               6 + 5 + 4 + 1
%e A241084                                               5 + 5 + 5 + 1
%e A241084                               9 + 1 + 1 + 1  10 + 2 + 2 + 2
%e A241084                               8 + 2 + 1 + 1   9 + 3 + 2 + 2
%e A241084                               7 + 3 + 1 + 1   8 + 4 + 2 + 2
%e A241084                               6 + 4 + 1 + 1   7 + 5 + 2 + 2
%e A241084                               5 + 5 + 1 + 1   6 + 6 + 2 + 2
%e A241084                               7 + 2 + 2 + 1   8 + 3 + 3 + 2
%e A241084                               6 + 3 + 2 + 1   7 + 4 + 3 + 2
%e A241084                               5 + 4 + 2 + 1   6 + 5 + 3 + 2
%e A241084                               5 + 3 + 3 + 1   6 + 4 + 4 + 2
%e A241084                               4 + 4 + 3 + 1   5 + 5 + 4 + 2
%e A241084                5 + 1 + 1 + 1  6 + 2 + 2 + 2   7 + 3 + 3 + 3
%e A241084                4 + 2 + 1 + 1  5 + 3 + 2 + 2   6 + 4 + 3 + 3
%e A241084                3 + 3 + 1 + 1  4 + 4 + 2 + 2   5 + 5 + 3 + 3
%e A241084                3 + 2 + 2 + 1  4 + 3 + 3 + 2   5 + 4 + 4 + 3
%e A241084 1 + 1 + 1 + 1  2 + 2 + 2 + 2  3 + 3 + 3 + 3   4 + 4 + 4 + 4
%e A241084     4(1)            4(2)           4(3)            4(4)       ..   4n
%e A241084 ------------------------------------------------------------------------
%e A241084      1               10             46             141        ..   a(n)
%t A241084 CoefficientList[Series[-(5*x^6 + 17*x^5 + 25*x^4 + 30*x^3 + 19*x^2 + 7*x + 1)/((x - 1)^5*(x^2 + x + 1)^2), {x, 0, 50}], x] (* _Wesley Ivan Hurt_, Jun 13 2014 *)
%t A241084 LinearRecurrence[{3, -3, 3, -6, 6, -3, 3, -3, 1}, {1, 10, 46, 141, 334, 680, 1247, 2106, 3348}, 50] (* _Vincenzo Librandi_, Aug 29 2015 *)
%t A241084 Table[Total[IntegerPartitions[4 n,{4}][[;;,2]]],{n,40}] (* _Harvey P. Dale_, Aug 17 2024 *)
%o A241084 (PARI) Vec(-x*(5*x^6+17*x^5+25*x^4+30*x^3+19*x^2+7*x+1)/((x-1)^5*(x^2+x+1)^2) + O(x^100)) \\ _Colin Barker_, Apr 16 2014
%o A241084 (Magma) I:=[1,10,46,141,334,680,1247,2106,3348]; [n le 9 select I[n] else 3*Self(n-1)-3*Self(n-2)+3*Self(n-3)-6*Self(n-4)+6*Self(n-5)-3*Self(n-6)+3*Self(n-7)-3*Self(n-8)+Self(n-9): n in [1..45]]; // _Vincenzo Librandi_, Aug 29 2015
%Y A241084 Cf. A238328, A238340, A238702, A238705, A238706, A239056, A239057, A239059.
%K A241084 nonn,easy
%O A241084 1,2
%A A241084 _Wesley Ivan Hurt_ and _Antonio Osorio_, Apr 15 2014