A241085 Number of partitions p of n into distinct parts such that max(p) < 2*(number of parts of p).
0, 1, 0, 1, 1, 1, 1, 1, 2, 2, 3, 2, 3, 3, 4, 5, 6, 6, 7, 8, 8, 10, 11, 13, 14, 17, 18, 21, 22, 25, 27, 31, 33, 38, 42, 47, 52, 57, 63, 69, 76, 82, 91, 99, 109, 119, 132, 142, 158, 171, 188, 203, 223, 240, 263, 284, 309, 334, 364, 393, 428, 463, 501, 543, 588
Offset: 0
Examples
a(15) counts these 5 partitions: 7521, 7431, 6531, 6432, 54321.
Programs
-
Mathematica
z = 40; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &]; Table[Count[f[n], p_ /; Max[p] < 2*Length[p]], {n, 0, z}] (* A241085 *) Table[Count[f[n], p_ /; Max[p] <= 2*Length[p]], {n, 0, z}] (* A241086 *) Table[Count[f[n], p_ /; Max[p] == 2*Length[p]], {n, 0, z}] (* A241087 *) Table[Count[f[n], p_ /; Max[p] >= 2*Length[p]], {n, 0, z}] (* A241088 *) Table[Count[f[n], p_ /; Max[p] > 2*Length[p]], {n, 0, z}] (* A241089 *)