cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241087 Number of partitions p of n into distinct parts such that max(p) = 2*(number of parts of p).

This page as a plain text file.
%I A241087 #7 May 11 2025 18:53:10
%S A241087 0,0,1,0,0,1,1,1,0,1,1,2,2,2,2,2,2,3,4,4,6,5,6,6,7,7,9,10,12,13,15,16,
%T A241087 18,19,20,23,25,28,30,35,38,43,46,51,55,61,64,72,76,84,91,101,109,120,
%U A241087 130,142,155,168,181,196,212,228,248,266,288,311,337
%N A241087 Number of partitions p of n into distinct parts such that max(p) = 2*(number of parts of p).
%e A241087 a(15) counts these 2 partitions:  8421, 654.
%t A241087 z = 40; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &];
%t A241087 Table[Count[f[n], p_ /; Max[p] < 2*Length[p]], {n, 0, z}]  (* A241085 *)
%t A241087 Table[Count[f[n], p_ /; Max[p] <= 2*Length[p]], {n, 0, z}] (* A241086 *)
%t A241087 Table[Count[f[n], p_ /; Max[p] == 2*Length[p]], {n, 0, z}] (* A241087 *)
%t A241087 Table[Count[f[n], p_ /; Max[p] >= 2*Length[p]], {n, 0, z}] (* A241088 *)
%t A241087 Table[Count[f[n], p_ /; Max[p] > 2*Length[p]], {n, 0, z}]  (* A241089 *)
%Y A241087 Cf. A241085, A241086, A241088, A241089.
%K A241087 nonn,easy
%O A241087 0,12
%A A241087 _Clark Kimberling_, Apr 17 2014