A241090 Number of partitions p of n such that (number of numbers in p having multiplicity > 1) = number of 1s in p.
1, 0, 1, 1, 1, 3, 3, 5, 6, 10, 12, 16, 21, 29, 36, 47, 58, 77, 93, 121, 146, 185, 225, 280, 338, 419, 505, 612, 743, 888, 1075, 1283, 1539, 1822, 2190, 2575, 3073, 3612, 4287, 5022, 5936, 6938, 8158, 9527, 11151, 12983, 15156, 17617, 20468, 23770, 27531
Offset: 0
Examples
a(6) counts these 3 partitions: 6, 42, 2211.
Programs
-
Mathematica
z = 30; f[n_] := f[n] = IntegerPartitions[n]; e[p_] := Length[DeleteDuplicates[Select[p, Count[p, #] > 1 &]]]; Table[Count[f[n], p_ /; e[p] == Count[p, 1]], {n, 0, z}]