A241091 Number of partitions p of n into distinct parts such that max(p) <= 1 + 2*(number of parts of p).
0, 1, 1, 2, 1, 2, 3, 3, 3, 4, 5, 5, 7, 7, 9, 10, 11, 12, 15, 16, 19, 22, 24, 27, 30, 34, 37, 43, 47, 53, 59, 66, 72, 82, 88, 99, 109, 120, 131, 146, 160, 176, 194, 212, 233, 256, 279, 304, 334, 362, 396, 431, 471, 510, 558, 604, 659, 714, 776, 839, 913, 985
Offset: 0
Examples
a(12) counts these 5 partitions: 741, 732, 651, 642, 6321, 543, 5421.
Programs
-
Mathematica
z = 30; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &]; Table[Count[f[n], p_ /; Max[p] < 1 + 2*Length[p]], {n, 0, z}] (*A241086*) Table[Count[f[n], p_ /; Max[p] <= 1 + 2*Length[p]], {n, 0, z}](*A241091*) Table[Count[f[n], p_ /; Max[p] == 1 + 2*Length[p]], {n, 0, z}](*A241092*) Table[Count[f[n], p_ /; Max[p] >= 1 + 2*Length[p]], {n, 0, z}](*A241089*) Table[Count[f[n], p_ /; Max[p] > 1 + 2*Length[p]], {n, 0, z}] (*A241093*)