A241092 Number of partitions p of n into distinct parts such that max(p) = 1 + 2*(number of parts of p).
0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 7, 7, 8, 9, 10, 10, 12, 13, 15, 17, 19, 21, 25, 26, 29, 32, 35, 38, 42, 46, 51, 57, 62, 69, 76, 83, 90, 100, 107, 117, 127, 139, 150, 165, 178, 195, 212, 231, 250, 273, 294, 319, 346, 373, 402
Offset: 0
Examples
a(12) counts these 5 partitions: 741, 732, 651, 642, 6321, 543, 5421.
Programs
-
Mathematica
z = 30; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &]; Table[Count[f[n], p_ /; Max[p] < 1 + 2*Length[p]], {n, 0, z}] (*A241086*) Table[Count[f[n], p_ /; Max[p] <= 1 + 2*Length[p]], {n, 0, z}](*A241091*) Table[Count[f[n], p_ /; Max[p] == 1 + 2*Length[p]], {n, 0, z}](*A241092*) Table[Count[f[n], p_ /; Max[p] >= 1 + 2*Length[p]], {n, 0, z}](*A241089*) Table[Count[f[n], p_ /; Max[p] > 1 + 2*Length[p]], {n, 0, z}] (*A241093*)