A241093 Number of partitions p of n into distinct parts such that max(p) > 1 + 2*(number of parts of p).
0, 0, 0, 0, 1, 1, 1, 2, 3, 4, 5, 7, 8, 11, 13, 17, 21, 26, 31, 38, 45, 54, 65, 77, 92, 108, 128, 149, 175, 203, 237, 274, 318, 366, 424, 486, 559, 640, 733, 836, 953, 1084, 1232, 1398, 1583, 1792, 2025, 2286, 2576, 2902, 3262, 3666, 4111, 4610, 5160, 5774
Offset: 0
Examples
a(12) counts these 8 partitions: {12}, {11,1}, {10,2}, {9,3}, {9,2,1}, {8,4}, {8,3,1}, {7,5}.
Programs
-
Mathematica
z = 30; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &]; Table[Count[f[n], p_ /; Max[p] < 1 + 2*Length[p]], {n, 0, z}] (*A241086*) Table[Count[f[n], p_ /; Max[p] <= 1 + 2*Length[p]], {n, 0, z}](*A241091*) Table[Count[f[n], p_ /; Max[p] == 1 + 2*Length[p]], {n, 0, z}](*A241092*) Table[Count[f[n], p_ /; Max[p] >= 1 + 2*Length[p]], {n, 0, z}](*A241089*) Table[Count[f[n], p_ /; Max[p] > 1 + 2*Length[p]], {n, 0, z}] (*A241093*)