This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A241100 #27 Oct 23 2024 16:04:24 %S A241100 2,11,101,1117,10111,101111,1111151,11110111,101111111,1111111121, %T A241100 11111111113,101111111111,1111111118111,11111111111411, %U A241100 111111111116111,1111111111111181,11111111101111111,101111111111111111,1111111111111111111,11011111111111111111 %N A241100 Smallest prime with length n having at least n-1 identical digits. %C A241100 Conjecture: each term consists of at least n-1 digits 1. - _Chai Wah Wu_, Dec 10 2015 %C A241100 From _Robert G. Wilson v_, Dec 14 2015: (Start) %C A241100 Terms for which the digit d is the other digit besides the 1's: %C A241100 d: %C A241100 0: 3, 5, 6, 8, 9, 12, 17, 18, 20, 24, 26, 29, 30, 32, 33, 35, 36, 38, 39, 42, ..., ; n cannot be congruent to 1 (mod 3); %C A241100 1: 2, 19, 23, not 317, nor 1031, ..., (see A004023); n cannot be congruent to 0 (mod 3) %C A241100 2: 1, 10, 34, 46, 67, 75, 100, 103, 142, 148, 154, 175, 198, 232, 244, 274, ..., ; %C A241100 3: 11, 63, 69, 71, 87, 123, 125, 165, 191, 197, 203, 239, 254, 255, 275, 279, ..., ; %C A241100 4: 14, 31, 55, 76, 85, 91, 95, 109, 121, 127, 130, 143, 155, 163, 166, 178, ..., ; %C A241100 5: 7, 22, 28, 37, 45, 52, 60, 94, 111, 132, 133, 139, 159, 160, 172, 184, ..., ; %C A241100 6: 15, 41, 57, 59, 135, 156, 171, 213, 311, 336, 339, 345, 347, 350, 431, ..., ; %C A241100 7: 4, 40, 47, 58, 64, 70, 101, 106, 112, 115, 118, 131, 136, 145, 157, 169, ..., ; %C A241100 8: 13, 16, 25, 43, 49, 61, 73, 79, 82, 88, 93, 97, 99, 117, 124, 141, 151, ..., ; %C A241100 9: 21, 27, 65, 81, 119, 167, 179, 183, 189, 237, 242, 287, 299, 333, 356, ..., . (End) %H A241100 Chai Wah Wu, <a href="/A241100/b241100.txt">Table of n, a(n) for n = 1..1000</a> %p A241100 with(numtheory):lst:={}:nn:=80:kk:=0:T:=array(1..nn):U:=array(1..20): %p A241100 for n from 2 to nn do: %p A241100 for i from 1 to n do: %p A241100 T[i]:=1: %p A241100 od: %p A241100 ii:=0: %p A241100 for k from 0 to 9 while(ii=0)do: %p A241100 for j from 1 to n while(ii=0)do: %p A241100 T[j]:=k:s:=sum('T[i]*10^(n-i)', 'i'=1..n): %p A241100 if type(s,prime)=true and length(s)=n %p A241100 then %p A241100 ii:=1: kk:=kk+1:U[kk]:=s: %p A241100 else %p A241100 T[j]:=1: %p A241100 fi: %p A241100 od: %p A241100 od: %p A241100 od : %p A241100 print(U) : %t A241100 f[n_] := Block[{k = n - 2, p = 0, r = (10^n - 1)/9, s}, If[ Mod[n, 3] != 1, While[p = r - 10^k; k > 0 && ! PrimeQ@ p, k--]]; If[ Mod[p, 10] == 0, k = 0; s = Select[Range[0, 8], Mod[# + n, 3] > 0 &]; While[p = Select[r + 10^k*s, PrimeQ]; k < n && p == {}, k++]]; p = Min@ p]; Array[f, 20] (* _Robert G. Wilson v_, Dec 14 2015 *) %t A241100 Table[SelectFirst[Sort[Flatten[Table[Select[FromDigits/@Permutations[PadRight[{d},n,1]],IntegerLength[#] == n&],{d,0,9}]]],PrimeQ],{n,20}] (* Assumes that Chai Wah Wu's conjecture, above, is correct. *) (* _Harvey P. Dale_, Oct 23 2024 *) %o A241100 (Python) %o A241100 from __future__ import division %o A241100 from sympy import isprime %o A241100 def A241100(n): %o A241100 for i in range(1,10): %o A241100 x = i*(10**n-1)//9 %o A241100 for j in range(n-1,-1,-1): %o A241100 for k in range(i,-1,-1): %o A241100 if j < n-1 or k < i: %o A241100 y = x-k*(10**j) %o A241100 if isprime(y): %o A241100 return y %o A241100 for j in range(n): %o A241100 for k in range(1,9-i+1): %o A241100 y = x+k*(10**j) %o A241100 if isprime(y): %o A241100 return y # _Chai Wah Wu_, Dec 29 2015 %K A241100 nonn,base %O A241100 1,1 %A A241100 _Michel Lagneau_, Apr 16 2014 %E A241100 a(4), a(7), a(10), a(11), a(13)-a(16) corrected by _Chai Wah Wu_, Dec 10 2015 %E A241100 a(1) from _Robert G. Wilson v_, Dec 11 2015