This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A241101 #9 Apr 16 2014 06:00:16 %S A241101 7,31,37,43,61,73,97,103,157,163,211,277,331,337,457,487,613,661,733, %T A241101 751,811,883,991,1021,1093,1297,1321,1483,1693,1741,1873,2083,2113, %U A241101 2143,2203,2221,2287,2347,2437,2473,2707,2917,3001,3067,3187,3307,3331,3343,3541 %N A241101 Primes p such that (p^3 - 4)/3 is prime. %H A241101 K. D. Bajpai, <a href="/A241101/b241101.txt">Table of n, a(n) for n = 1..8906</a> %e A241101 7 is prime and appears in the sequence because (7^3 - 4)/3 = 113 which is a prime. %e A241101 31 is prime and appears in the sequence because (31^3 - 4)/3 = 9929 which is a prime. %p A241101 KD:= proc() local a,b;a:=ithprime(n); b:=(a^3-4)/3; if b=floor(b) and isprime(b) then RETURN (a); fi; end: seq(KD(), n=1..1000); %t A241101 Select[Prime[Range[500]], PrimeQ[(#^3 - 4)/3] &] %t A241101 n = 0; Do[If[PrimeQ[(Prime[k]^3 - 4)/3], n = n + 1; Print[n, " ", Prime[k]]], {k, 1, 200000}] (*b-file*) %o A241101 (PARI) s=[]; forprime(p=2, 4000, if((p^3-4)%3==0 && isprime((p^3-4)/3), s=concat(s, p))); s \\ _Colin Barker_, Apr 16 2014 %Y A241101 Cf. A109953 (primes p: (p^2+1)/3 is prime). %Y A241101 Cf. A118915 (primes p: (p^2+5)/6 is prime). %Y A241101 Cf. A118918 (primes p: (p^2+11)/12 is prime). %K A241101 nonn %O A241101 1,1 %A A241101 _K. D. Bajpai_, Apr 16 2014