cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A241103 Number of n X 3 0..2 arrays with no element equal to one or three horizontal or vertical neighbors, with new values 0..2 introduced in row major order.

Original entry on oeis.org

2, 11, 58, 294, 1522, 7846, 40418, 208374, 1074002, 5535686, 28533058, 147068694, 758041522, 3907203046, 20139040418, 103803409974, 535037802002, 2757765332486, 14214452973058, 73266086411094, 377638128337522
Offset: 1

Views

Author

R. H. Hardin, Apr 16 2014

Keywords

Examples

			Some solutions for n=4:
..0..1..0....0..1..0....0..1..0....0..1..2....0..1..0....0..1..0....0..1..0
..1..0..1....2..2..1....1..2..1....1..0..1....2..0..2....1..2..1....2..0..1
..2..1..2....2..2..0....2..0..2....0..1..0....0..2..0....2..0..2....0..1..2
..1..0..1....0..1..2....1..2..0....2..0..2....2..1..2....0..2..0....1..0..1
		

Crossrefs

Column 3 of A241108.

Formula

Empirical: a(n) = 3*a(n-1) + 8*a(n-2) + 16*a(n-3).
Empirical g.f.: x*(2 + 5*x + 9*x^2) / (1 - 3*x - 8*x^2 - 16*x^3). - Colin Barker, Oct 29 2018

A241104 Number of nX4 0..2 arrays with no element equal to one or three horizontal or vertical neighbors, with new values 0..2 introduced in row major order.

Original entry on oeis.org

4, 36, 294, 2436, 19814, 162776, 1333934, 10937316, 89651534, 734979136, 6025149574, 49393306556, 404916355574, 3319433387656, 27212098788254, 223079838087956, 1828767624421854, 14991902921730896, 122900877847563254
Offset: 1

Views

Author

R. H. Hardin, Apr 16 2014

Keywords

Comments

Column 4 of A241108

Examples

			Some solutions for n=4
..0..1..2..0....0..1..1..2....0..1..0..2....0..1..2..1....0..0..1..2
..1..2..0..1....2..1..1..0....1..0..1..0....1..0..1..0....0..0..2..1
..2..0..1..0....0..2..0..1....0..2..2..1....2..1..2..1....1..2..1..2
..0..1..0..2....1..0..1..0....1..2..2..0....1..0..1..0....0..1..2..1
		

Formula

Empirical: a(n) = 6*a(n-1) +21*a(n-2) -12*a(n-3) +8*a(n-4) -688*a(n-5) -1648*a(n-6) -768*a(n-7) -2304*a(n-8) +8192*a(n-9) +16384*a(n-10)

A241105 Number of nX5 0..2 arrays with no element equal to one or three horizontal or vertical neighbors, with new values 0..2 introduced in row major order.

Original entry on oeis.org

8, 116, 1522, 19814, 259388, 3374086, 44030862, 574246744, 7489718098, 97685897406, 1274061880332, 16617079770494, 216729255718838, 2826706576812536, 36867513064014682, 480847045785788134
Offset: 1

Views

Author

R. H. Hardin, Apr 16 2014

Keywords

Comments

Column 5 of A241108

Examples

			Some solutions for n=4
..0..1..0..2..1....0..1..2..2..0....0..1..0..2..1....0..1..2..1..2
..1..0..1..0..0....1..0..2..2..2....2..0..2..0..2....2..0..1..2..0
..2..1..2..0..0....0..2..0..2..2....0..2..0..2..0....0..1..2..1..2
..1..2..0..2..1....1..0..2..0..1....1..0..1..0..1....1..2..1..0..1
		

Formula

Empirical: a(n) = 14*a(n-1) +2*a(n-2) -175*a(n-3) -54*a(n-4) +1648*a(n-5) -42588*a(n-6) -24344*a(n-7) +167248*a(n-8) +247904*a(n-9) -88832*a(n-10) +33429248*a(n-11) +48635904*a(n-12) +27281408*a(n-13) -32276480*a(n-14) -600080384*a(n-15) -9134145536*a(n-16) -11089739776*a(n-17) -2071986176*a(n-18) +11282677760*a(n-19) +94019518464*a(n-20) +716320014336*a(n-21) +518617300992*a(n-22) +438086664192*a(n-23) +618475290624*a(n-24) -6597069766656*a(n-25) -17592186044416*a(n-26)

A241106 Number of nX6 0..2 arrays with no element equal to one or three horizontal or vertical neighbors, with new values 0..2 introduced in row major order.

Original entry on oeis.org

16, 376, 7846, 162776, 3374086, 70145916, 1454236806, 30189380016, 626548445696, 13004327687556, 269904513767276, 5601924832399656, 116268494681555446, 2413172096267222836, 50085748850277170776, 1039537719846439186376
Offset: 1

Views

Author

R. H. Hardin, Apr 16 2014

Keywords

Comments

Column 6 of A241108

Examples

			Some solutions for n=4
..0..1..0..1..2..0....0..1..0..1..2..1....0..1..0..2..1..1....0..1..0..2..0..1
..1..0..1..2..1..2....1..0..1..2..1..2....1..0..1..0..1..1....2..0..2..0..2..0
..0..1..2..0..2..0....0..2..0..1..0..0....0..1..0..2..0..2....0..2..0..1..0..2
..1..2..0..2..1..2....2..0..1..2..0..0....2..0..2..1..2..0....2..0..2..0..1..0
		

Formula

Empirical recurrence of order 76 (see link above)

A241107 Number of nX7 0..2 arrays with no element equal to one or three horizontal or vertical neighbors, with new values 0..2 introduced in row major order.

Original entry on oeis.org

32, 1216, 40418, 1333934, 44030862, 1454236806, 48054344508, 1586763763374, 52415988665902, 1731396543937826, 57192293520907518, 1889201414043365704, 62405079297467322902, 2061398474689109752446, 68093252520609897541958
Offset: 1

Views

Author

R. H. Hardin, Apr 16 2014

Keywords

Comments

Column 7 of A241108

Examples

			Some solutions for n=3
..0..1..2..1..2..1..2....0..1..1..2..0..2..0....0..1..0..2..1..0..1
..2..2..1..0..1..0..1....2..1..1..1..2..0..2....1..0..2..1..0..1..2
..2..2..0..1..0..1..0....1..0..1..1..0..2..1....0..2..1..0..1..0..1
		
Showing 1-5 of 5 results.